精英家教网 > 高中数学 > 题目详情

已知为常数,则使得成立的一个充分而不必要条件是 (   )

A.          B.          C.          D.

 

【答案】

C.

【解析】

试题分析:由已知及牛顿-莱布尼茨公式得.由已知要求选项能推出,但不能推出选项.,但不能推出,故选C.

考点:1.定积分的计算;2充分、必要、充要条件的判断.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-x,则使得数列{
f(n)pn+q
}(n∈N+)成等差数列的非零常数p与q所满足的关系式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求证:bn=
2
7
8n-
2
7

(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中数学 来源:江西省景德镇市2009届高三下学期第一次模拟质量检测(数学理) 题型:044

若数列{an}满足=d,其中d为常数,则称数列{an}为等方差数列.已知等方差数列{an}满足an>0,a1=1,a1,a2,a5成等比数列且互不相等.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)求数列的前n项和;

(Ⅲ)是否存在实数m,使得对一切正整数n,总有≤m成立?若存在,求实数m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(14分)若数列满足,其中为常数,则称数列为等方差数列.已知等方差数列满足成等比数列且互不相等.

(Ⅰ)求数列的通项公式;

(Ⅱ)求数列的前项和;

    (Ⅲ)是否存在实数,使得对一切正整数,总有成立?若存在,求实数的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案