已知椭圆的离心率为,,为椭圆的两个焦点,点在椭圆上,且的周长为。
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆相交于、两点,若(为坐标原点),求证:直线与圆相切.
(Ⅰ);(Ⅱ)详见解析.
【解析】
试题分析:(Ⅰ)借助题中的已知条件以及、、三者之间的相互关系确定、、的值,从而确定椭圆的方程;(Ⅱ)对直线的斜率存在与不存在这两种情况进行讨论,即根据这个条件确定直线倾斜角为时,直线的方程,以及根据这个条件在斜率存在时方程中、之间的等量关系,并借助圆心(原点)到直线的距离等于圆的半径确定直线与圆相切.
试题解析:解(Ⅰ)由已知得,且
解得,又
所以椭圆的方程为 4分
(Ⅱ)证明:有题意可知,直线不过坐标原点,设的坐标分别为
(ⅰ)当直线轴时,直线的方程为且
则
,解得
故直线的方程为
因此,点到直线的距离为
又圆的圆心为,半径
所以直线与圆相切 9分
(ⅱ)当直线不垂直于轴时,设直线的方程为
由 得
故
即 ①
又圆的圆心为,半径
圆心到直线的距离为
②
将①式带入②式得
所以
因此,直线与圆相切 14分
考点:椭圆、韦达定理、点到直线的距离
科目:高中数学 来源: 题型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com