精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求 的值,若不存在,说明理由.

【答案】(Ⅰ)证明:∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
且AB⊥AD,AB平面ABCD,
∴AB⊥平面PAD,
∵PD平面PAD,
∴AB⊥PD,
又PD⊥PA,且PA∩AB=A,
∴PD⊥平面PAB;
(Ⅱ)解:取AD中点为O,连接CO,PO,
∵CD=AC=
∴CO⊥AD,
又∵PA=PD,
∴PO⊥AD.
以O为坐标原点,建立空间直角坐标系如图:
则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),

为平面PCD的法向量,
则由 ,得 ,则
设PB与平面PCD的夹角为θ,则 =
(Ⅲ)解:假设存在M点使得BM∥平面PCD,设 ,M(0,y1 , z1),
由(Ⅱ)知,A(0,1,0),P(0,0,1), ,B(1,1,0),
则有 ,可得M(0,1﹣λ,λ),

∵BM∥平面PCD, 为平面PCD的法向量,
,即 ,解得
综上,存在点M,即当 时,M点即为所求.

【解析】(Ⅰ)由已知结合面面垂直的性质可得AB⊥平面PAD,进一步得到AB⊥PD,再由PD⊥PA,由线面垂直的判定得到PD⊥平面PAB;(Ⅱ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量 的坐标,再求出平面PCD的法向量 ,设PB与平面PCD的夹角为θ,由 求得直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在M点使得BM∥平面PCD,设 ,M(0,y1 , z1),由 可得M(0,1﹣λ,λ), ,由BM∥平面PCD,可得
,由此列式求得当 时,M点即为所求.
【考点精析】本题主要考查了空间中直线与平面之间的位置关系的相关知识点,需要掌握直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在(﹣1,1)上的偶函数,当x∈[0,1)时f(x)=lg
(1)求f(x)的解析式;
(2)探求f(x)的单调区间,并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为 ,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点.设 ,则λ12等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数且)在处取得极值.

(Ⅰ)当时,求的单调区间;

(Ⅱ)若上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C:y2=2px和⊙M:(x﹣4)2+y2=1,过抛物线C上一点H(x0 , y0)(y0≥1)作两条直线与⊙M相切于A、两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为
(Ⅰ)求抛物线C的方程;
(Ⅱ)当∠AHB的角平分线垂直x轴时,求直线EF的斜率;
(Ⅲ)若直线AB在y轴上的截距为t,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处的切线方程为.

(1)求

(2)若存在实数,对任意的,都有,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数 在区间(m,m+1)上单调递减,命题q:实数m满足方程 表示的焦点在y轴上的椭圆.
(1)当p为真命题时,求m的取值范围;
(2)若命题“p且q”为假命题,“p或q”为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】建造一间地面面积为12m2的背面靠墙的猪圈,底面为长方形的猪圈正面的造价为120元/m2 , 侧面的造价为80元/m2 , 屋顶造价为1120元.如果墙高3m,且不计猪圈背面的费用,问怎样设计能使猪圈的总造价最低,最低总造价是多少元?

查看答案和解析>>

同步练习册答案