精英家教网 > 高中数学 > 题目详情

【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2.

1)设1箱零件人工检验总费用为元,求的分布列;

2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.

【答案】1)详见解析(2)应该选择人工检验,详见解析

【解析】

1)根据题意,工人抽查的4个零件中,分别计算出4个都是正品或者都是次品,4个不全是次品的人工费用,得出的可能值,利用二项分布分别求出概率,即可列出的分布列;

(2)由(1)求出的数学期望,根据条件分别算出1000箱零件的人工检验和机器检验总费用的数学期望,比较即可得出结论.

解:(1)由题可知,工人抽查的4个零件中,

当4个都是正品或者都是次品,则人工检验总费用为:元,

4个不全是次品时,人工检验总费用都为:元,

所以的可能取值为820

的分布列为

8

20

0.4112

0.5888

2)由(1)知,

所以1000箱零件的人工检验总费用的数学期望为元,

因为1000箱零件的机器检验总费用的数学期望为元,

所以应该选择人工检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司计划投资开发一种新能源产品,预计能获得10万元1000万元的收益.现准备制定一个对开发科研小组的奖励方案:奖金(单位:万元)随收益(单位:万元)的增加而增加,且奖金总数不超过9万元,同时奖金总数不超过收益的.

(Ⅰ)若建立奖励方案函数模型,试确定这个函数的定义域、值域和的范围;

(Ⅱ)现有两个奖励函数模型:①;②.试分析这两个函数模型是否符合公司的要求?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的准线为,其焦点为F,点B是抛物线C上横坐标为的一点,若点B到的距离等于

(1)求抛物线C的方程,

(2)设A是抛物线C上异于顶点的一点,直线AO交直线于点M,抛物线C在点A处的切线m交直线于点N,求证:以点N为圆心,以为半径的圆经过轴上的两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面为正三角形的直三棱柱中,已知AB=AA1,点M的中点.

1)求证:

2)点P的中点,求二面角P-AB-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若方程有实数根,则称为函数的一个不动点.已知函数.

1)若,求证:有唯一不动点;

2)若有两个不动点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,CMCN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的AB处设置观景台,记BC=aAC=bAB=c(单位:百米)

1)若abc成等差数列,且公差为4,求b的值;

2)已知AB=12,记∠ABC,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个半径为2的钢球内放置一个用来盛特殊液体的正四棱柱容器,要使该容器所盛液体尽可能多,则该容器的高应为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为2的正方形沿对角线折叠,使得平面平面,又平面.

(1)若,求直线与直线所成的角;

(2)若二面角的大小为,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一、高二年级的全体学生都参加了体质健康测试,测试成绩满分为100分,规定测试成绩在之间为“体质优秀”,在之间为“体质良好”,在之间为“体质合格”,在之间为“体质不合格”.现从这两个年级中各随机抽取7名学生,测试成绩如下:

其中mn是正整数.

(Ⅰ)若该校高一年级有280学生,试估计高一年级“体质优秀”的学生人数;

(Ⅱ)若从高一年级抽取的7名学生中随机抽取2人,记X为抽取的2人中为“体质良好”的学生人数,求X的分布列及数学期望;

(Ⅲ)设两个年级被抽取学生的测试成绩的平均数相等,当高二年级被抽取学生的测试成绩的方差最小时,写出mn的值.(只需写出结论)

查看答案和解析>>

同步练习册答案