精英家教网 > 高中数学 > 题目详情
已知复数z=(1-sinθ)+icosθ(θ∈[
π
2
,π]),则|z|等于(  )
A、cos
θ
2
-sin
θ
2
B、sin
θ
2
-cos
θ
2
C、
2
(cos
θ
2
-sin
θ
2
)
D、
2
(sin
θ
2
-cos
θ
2
)
考点:复数求模
专题:数系的扩充和复数
分析:利用复数模的计算公式、三角函数基本关系式及其单调性即可得出.
解答: 解:∵复数z=(1-sinθ)+icosθ(θ∈[
π
2
,π]),
∴|z|=
(1-sinθ)2+cos2θ
=
2-2sinθ
=
2
|sin
θ
2
-cos
θ
2
|

∵θ∈[
π
2
,π],∴
θ
2
[
π
4
π
2
]

sin
θ
2
>cos
θ
2

∴|z|=
2
(sin
θ
2
-cos
θ
2
)

故选:C.
点评:本题考查了复数模的计算公式、三角函数基本关系式及其单调性,考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题错误的是(  )
A、“?x∈R,x+
1
x
=3”的否定形式是“?x∈R,x+
1
x
≠3”
B、命题“若一个数是负数,则它的平方是非负数”的否命题是假命题
C、函数f(x)=sin4x+cos4x的最小正周期为π
D、若关于x的方程x2+2px+1=0有实根,则方程(x2+px)
x-1
=0至少有一个根,其中p为实数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,复数z=
m(m+2)
m-1
+(m2+2m-1)i,当m为何值时,
(1)z∈R
(2)z是虚数
(3)z是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a2=-11,a5+a9=-2,则当Sn取最小值时,n等于(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在[0,+∞)单调递减,且f(-2)=0,若f(x-2)>0,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△A BC中,角 A.B.C所对的边分别为a.b.c,已知sin2 B+sin2C=sin2 A+sin BsinC.
(1)求角 A的大小;
(2)若cosB=
1
3
,a=3,求c值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a≠b,则等差数列a,x1,x2,b的公差是(  )
A、b-a
B、
b-a
2
C、
b-a
3
D、
b-a
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为
2
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+
2
相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.
(Ⅰ)若数列{an}是等差数列,且对任意正整数n都有Sn2=(Sn)2成立,求数列{an}的通项公式;
(Ⅱ)对任意正整数n,从集合{a1,a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1,a2,…,an一起恰好是1至Sn全体正整数组成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案