精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间;

(2)设函数 为自然对数的底数.当时,若 ,不等式成立,求的最大值.

【答案】(1)单调递减区间是,单调递增区间是;(2)3

【解析】试题分析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题等价于等价于 恒成立,,设,求出函数的导数,根据函数的单调性求出k的最大值即可.

试题解析:(1)对函数求导得

,得

时, ,此时函数单调递减;

时, ,此时函数单调递增,

所以函数的单调递减区间是,单调递增区间是.

(2)当时,由(1)可知

,不等式成立等价于当时, 恒成立,

恒成立,

因为

所以恒成立,

恒成立,

,则

时,

所以函数上单调递增,

所以

所以存在唯一的,使得,即

时, ,所以函数单调递减;

时, ,所以函数单调递增,

所以当时,函数有极小值,同时也为最小值,

因为

,且

所以的最大整数值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是某省从121日至224日的新冠肺炎每日新增确诊病例变化曲线图.

若该省从121日至224日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列的前n项和为,则下列说法中正确的是(

A.数列是递增数列B.数列是递增数列

C.数列的最大项是D.数列的最大项是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 所示,一条直角走廊宽为

1)若位于水平地面上的一根铁棒在此直角走廊内,且,试求铁棒的长

2)若一根铁棒能水平地通过此直角走廊,求此铁棒的最大长度;

3)现有一辆转动灵活的平板车,其平板面是矩形,它的宽如图2.平板车若想顺利通过直角走廊,其长度不能超过多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ln(x1) (aR)

(1)a1时,求函数f(x)在点(0f(0))处的切线方程;

(2)讨论函数f(x)的极值;

(3)求证:ln(n1)> (nN*)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是等差数列,a1=fx+1),a2=0a3=fx-1),其中fx=x2-4x+2

1)求通项公式an

2)若数列{an}为递增数列,令bn=an+1+an+2+an+3+an+4,求数列{}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,直线交椭圆两点,椭圆的右顶点为,且满足.

(1)求椭圆的方程;

(2)若直线与椭圆交于不同两点,且定点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

【答案】(1);(2)

【解析】试题分析:(1)由平面,可证,进而证得四边形为平行四边形,根据,可得

(2)利用等体积法可求点到平面的距离.

试题解析:((1)因为平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以

因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.

因为

.

(2)因为

所以平面

又因为平面

所以平面平面

平面平面

在平面内过点直线于点,则平面

中,

因为,所以

又由题知

所以

由已知求得,所以

连接BD,则

又求得的面积为

所以由点B 到平面的距离为.

型】解答
束】
19

【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.

(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;

(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:

日均派送单数

52

54

56

58

60

频数(天)

20

30

20

20

10

回答下列问题:

①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;

②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汕尾市基础教育处为调查在校中学生每天放学后的自学时间情况,在本市的所有中学生中随机抽取了120名学生进行调查,现将日均自学时间小于1小时的学生称为“自学不足”者根据调查结果统计后,得到如下列联表,已知在调查对象中随机抽取1人,为“自学不足”的概率为

非自学不足

自学不足

合计

配有智能手机

30

没有智能手机

10

合计

请完成上面的列联表;

根据列联表的数据,能否有的把握认为“自学不足”与“配有智能手机”有关?

附表及公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线经过点.

(1)证明:

(2)若当时, ,求的取值范围.

【答案】(1)证明见解析;(2) .

【解析】试题分析:(1先根据导数几何意义得切线斜率为,再根据切线过点,解得导数可得导函数零点,列表分析导函数符号变号规律可得函数单调性,根据函数单调性可得函数最小值为0,即得结论,2先化简不等式为,分离得,再利用导数求函数单调性,利用罗伯特法则求最大值,即得的取值范围.

试题解析:(1)曲线处的切线为,即

由题意得,解得

所以

从而

因为当时, ,当时, .

所以在区间上是减函数,区间上是增函数,

从而.

(2)由题意知,当时, ,所以

从而当时,

由题意知,即,其中

,其中

,即,其中

,其中

(1)当时,因为时, ,所以是增函数

从而当时,

所以是增函数,从而.

故当时符合题意.

(2)当时,因为时,

所以在区间上是减函数

从而当时,

所以上是减函数,从而

故当时不符合题意.

(3)当时,因为时, ,所以是减函数

从而当时,

所以是减函数,从而

故当时不符合题意

综上的取值范围是.

型】解答
束】
22

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),曲线 .以为极点, 轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.

1)求曲线的极坐标方程;

2)射线)与曲线的异于极点的交点为,与曲线的交点为,求.

查看答案和解析>>

同步练习册答案