精英家教网 > 高中数学 > 题目详情

【题目】某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,其主体造型的平面图是由两个相同的矩形ABCD和矩形EFGH构成的面积是200 m2的十字形区域,现计划在正方形MNPQ上建一花坛,造价为4 200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角上铺草坪,造价为80元/m2.

(1)设总造价为S元,AD的边长为x m,试建立S关于x的函数解析式;

(2)计划至少要投多少万元才能建造这个休闲小区?

【答案】(1)S=38 000+4 000x2 (0<x<10);(2)至少要投入11.8万元。

【解析】

(1)根据由两个相同的矩形ABCD和EFGH构成的十字形地域,四个小矩形加一个正方形面积共为200平方米得出AM的函数表达式,最后建立建立S与x的函数关系即得;

(2)利用基本不等式求出(1)中函数S的最小值,并求得当x取何值时,函数S的最小值即可.

(1)设DQy m,则x2+4xy=200,即y.

所以S=4 200x2+210×4xy+80×4×y2

=38 000+4 000x2 (0<x<10).

(2)由(1),得S=38 000+4 000x2

≥38 000+2=118 000,

当且仅当4 000x2,即x时取等号.

因为118 000元=11.8万元,

所以计划至少要投入11.8万元才能建造这个休闲小区.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)证明:an>1;
(Ⅱ)证明: + +…+ (n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解下列关于x的不等式:

(1); (2)x2-ax-2a2≤0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点分别为 交于O,A两点(O为坐标原点),且

求抛物线的方程;

过点O的直线交的下半部分于点M,交的左半部分于点N,点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,Tn为{bn}的前n项和,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sin(ax﹣ )cos(ax﹣ )+2cos2(ax﹣ )(a>0),且函数的最小正周期为
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x2+alnx(a<0).
(1)若函数f(x)的图象在点(2,f(2))处的切线斜率为 ,求实数a的值;
(2)求f(x)的单调区间;
(3)设g(x)=x2﹣(1﹣a)x,当a≤﹣1时,讨论f(x)与g(x)图象交点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x﹣ |+|x+2a|(a∈R,且a≠0)
(Ⅰ)当a=﹣1时,求不等式f(x)≥5的解集;
(Ⅱ)证明:f(x)≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),直线交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.

(1)求椭圆E的标准方程与离心率;

(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.

查看答案和解析>>

同步练习册答案