精英家教网 > 高中数学 > 题目详情
设F1,F2是双曲线
x2
9
-
y2
16
=1
的两个焦点,点P在双曲线上,且∠F1PF2=90°,求△F1PF2的面积.
分析:根据根据双曲线性质可知PF1-PF2的值,再根据∠F1PF2=90°,求得PF12+PF22的值,进而根据余弦定理求得PF1•PF2,进而可求得△F1PF2的面积.
解答:解:双曲线
x2
9
-
y2
16
=1
的a=3,c=5,
不妨设PF1>PF2,则PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10
得PF12+PF22=(PF1-PF22+2PF1•PF2=100
∴PF1•PF2=32
S=
1
2
PF1•PF2=16

△F1PF2的面积16.
点评:本题主要考查了双曲线的简单性质.要灵活运用双曲线的定义及焦距、实轴、虚轴等之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,点P在双曲线上,若
PF1
PF2
=0 且|
PF1
||
PF2
|=2ac(c=
a2+b2
),则双曲线的离心率为(  )
A、
1+
5
2
B、
1+
3
2
C、2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,
3
)
到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求△PF1F2的面积;
(3)过(-2,0)作直线l交双曲线C于A,B两点,若
OP
=
OA
+
OB
,是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线x2-
y224
=1
的两个焦点,是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设F1,F2是双曲线
x2
3
-y2=1
的两个焦点,P在双曲线上,当△F1PF2的面积为2时,
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点),且tan∠PF2F1=2,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案