精英家教网 > 高中数学 > 题目详情

【题目】德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘31(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第8项为1(注:l可以多次出现),则n的所有不同值的个数为

A. 4 B. 6 C. 8 D. 32

【答案】B

【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解的所有可能的取值.

详解:如果正整数按照上述规则施行变换后第八项为1,

则变换中的第7项一定为2,

变换中的第6项一定为4,

变换中的第5项可能为1,也可能是8,

变换中的第4项可能是2,也可能是16,

变换中的第4项为2时,变换中的第3项是4,变换中的第2项是18,变换中的第1项是26,

变换中的第4项为16时,变换中的第3项是325,变换中的第2项是64108,变换中的第1项是1282120,或3,

的所有可能的取值为,共6个,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表是一个容量为20的样本数据分组后的频率分布表:

分组

频数

4

2

6

8

(1)请估计样本的平均数;

(2)以频率估计概率,若样本的容量为2000,求在分组中的频数;

(3)若从数据在分组与分组的样本中随机抽取2个,求恰有1个样本落在分组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高万元,已知建筑第5层楼房时,每平方米建筑费用为万元.

若学生宿舍建筑为x层楼时,该楼房综合费用为y万元,综合费用是建筑费用与购地费用之和,写出的表达式;

为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大小;
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为,半径为1,该纸片上的等边三角形的中心为.为圆上的点,分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起,使得重合,得到三棱锥.当的边长变化时,所得三棱锥体积的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行如图的程序框图,输出S的值为4,则判断框中应填入的条件是( )

A.k<14?
B.k<15?
C.k<16?
D.k<17?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a3=9,a5=17,记数列 的前n项和为Sn , 若 ,对任意的n∈N*成立,则整数m的最小值为(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数fx)的单调递增区间;

2)将函数fx)的图象向右平移个单位,再将所得图象的橫坐标缩短到原来的一半,纵坐标不变,得到新的函数ygx),当时,求gx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商丘市大型购物中心——万达广场将于201876日全面开业,目前正处于试营业阶段,某按摩椅经销商为调查顾客体验按摩椅的时间,随机调查了50名顾客,体验时间(单位:分钟)落在各个小组的频数分布如下表:

体验

时间

频数

(1)求这名顾客体验时间的样本平均数,中位数,众数

(2)已知体验时间为的顾客中有2名男性,体验时间为的顾客中有3名男性,为进一步了解顾客对按摩椅的评价,现随机从体验时间为的顾客中各抽一人进行采访,求恰抽到一名男性的概率.

查看答案和解析>>

同步练习册答案