精英家教网 > 高中数学 > 题目详情
3.若cosα=$\frac{1}{2}$,α∈(0,π),则cos($\frac{π}{2}$-α)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 由条件利用诱导公式化简所给的三角函数式,可得结果.

解答 解:∵cosα=$\frac{1}{2}$,α∈(0,π),则cos($\frac{π}{2}$-α)=sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{\sqrt{3}}{2}$,
故选:B.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数y=|x2-1|,要使直线y=a与该函数图象有四个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}为等比数列,Sn是它的前n项和.若${a_3}{a_5}=\frac{1}{4}{a_1}$,且a4与a7的等差中项为$\frac{9}{8}$,则S5为31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log410,b=log23,c=20.5,则(  )
A.a>c>bB.b>c>aC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列四个命题中,正确的是②③④(写出所有正确命题的序号)
①函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
②设集合A={-1,0,1},B={-1,1},则在A到B的所有映射中,偶函数共有4个;
③不存在实数a,使函数$f(x)={π^{a{x^2}+2ax+3}}$的值域为(0,1]
④函数$f(x)={log_{\frac{1}{2}}}({x^2}-ax+3a)$在[2,+∞)上是减函数,则-4<a≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在等比数列{an}中,已知a1=3,公比q≠1,等差数列{bn}满足b1=a1,b4=a2,b13=a3
(1)求数列{an}与{bn}的通项公式;
(2)记cn=an+bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法中正确的是(  )
A.若p∨q为真命题,则p,q均为真命题
B.“a≥5”是“?x∈[1,2],x2-a≤0恒成立“的充要条件
C.在△ABC中,“a>b”是“sinA>sinB”的必要不充分条件
D.命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知R上的偶函数f(x)在[0,+∞)单调递增,若f(m+1)<f(3m-1),则实数m的取值范围是m>1或m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C上的任一点到点F(0,1)的距离减去它到x轴的距离的差都是1.
(1)求曲线C的方程;
(2)设直线y=kx+m(m>0)与曲线C交于A,B两点,若对于任意k∈R都有$\overrightarrow{FA}$•$\overrightarrow{FB}$<0,求m的取值范围.

查看答案和解析>>

同步练习册答案