精英家教网 > 高中数学 > 题目详情
已知向量,经过定点且方向向量为的直线与经过定点且方向向量为的直线交于点M,其中R,常数a>0.
(1)求点M的轨迹方程;
(2)若,过点的直线与点M的轨迹交于C、D两点,求的取值范围.
(Ⅰ) (除去点)(Ⅱ)
设点

,消去参数,整理得点的轨迹方程为
(除去点)…………5分
(2)由得点M轨迹方程为(除去点),
若设直线CD的方程为,则由消去y,显然,于是

因此


若直线轴,则,于是
综上可知.…………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且其焦点F(c,0)(c>0)到相应准线l的距离为3,过焦点F的直线与椭圆交于A、B两点。
(1)求椭圆的标准方程;
(2)设M为右顶点,则直线AM、BM与准线l分别交于P、Q两点,(P、Q两点不重合),求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆G:的两个焦点F1(-c,0)、F2(c,0),M是椭圆上的一点,且满足
(Ⅰ)求离心率e的取值范围;
(Ⅱ)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为求此时椭圆G的方程;(ⅱ)设斜率为k(k≠0)的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点的直线对称?若能,求出k的取值范围;若不能,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别是直线上的两个动点,并且,动点P满足.记动点P的轨迹为C.
(I)求轨迹C的方程;
(II)若点D的坐标为(0,16),M、N是曲线C上的两个动点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C过点是椭圆的左焦点,P、Q是椭圆C上的两个动点,且|PF|、|MF|、|QF|成等差数列。
(1)求椭圆C的标准方程;
(2)求证:线段PQ的垂直平分线经过一个定点A;
(3)设点A关于原点O的对称点是B,求|PB|的最小值及相应点P的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一束光线从点出发,经直线上一点反射后,恰好穿过点.(Ⅰ)求点关于直线的对称点的坐标;
(Ⅱ)求以为焦点且过点的椭圆的方程;
(Ⅲ)设直线与椭圆的两条准线分别交于两点,点为线段上的动点,求点 到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的焦点分别为,直线轴于点,且.
(1)试求椭圆的方程;
(2)过分别作互相垂直的两直线与椭圆分别交于四点(如图所示),试求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆=1的焦点为F1、F2,P是椭圆上任意一点,一条斜率为的直线交椭圆于A、B两点,如果当a变化时,总可同时满足:
①∠F1PF2的最大值为;
②直线l:ax+y+1=0平分线段AB.
求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在第一象限,且是椭圆上的一点,△的内切圆半径是,求的坐标

查看答案和解析>>

同步练习册答案