精英家教网 > 高中数学 > 题目详情
13、随机变量ξ服从正态分布N(0,1),如果P(ξ<1)=0.8413,求P(-1<ξ<0).
分析:画出正态分布N(0,1)的密度函数的图象:由图象的对称性可得结果.
解答:解:画出正态分布N(0,1)的密度函数的图象如下图:
由图象的对称性可得,
∵ξ~N(0,1),
∴P(-1<ξ<0)
=P(0<ξ<1)
=Φ(1)-Φ(0)
=0.8413-0.5=0.3413.
故P(-1<ξ<0)=0.3413.
点评:本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某随机变量ξ服从正态分布,其概率密度函数为f(x)=
1
e-
x2
8
,则ξ的期望和标准差分别是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省惠州市高三4月模拟考试理科数学试卷(解析版) 题型:选择题

设随机变量服从正态分 布,若,则(     )

A.               B.               C.               D.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某随机变量ξ服从正态分布,其概率密度函数为f(x)=
1
e-
x2
8
,则ξ的期望和标准差分别是(  )
A.0和8B.0和4C.0和
2
D.0和2

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省实验中学高二(下)模块考试数学试卷(理科)(解析版) 题型:选择题

某随机变量ξ服从正态分布,其概率密度函数为,则ξ的期望和标准差分别是( )
A.0和8
B.0和4
C.0和
D.0和2

查看答案和解析>>

科目:高中数学 来源:广东实验中学2009-2010学年(下)高二级模块考试(理) 题型:选择题

 某随机变量服从正态分布,其概率密度函数为,则的期望和标准差分别是                                               (     )

A.0和8       B.0和4        C.0和        D.0和2

 

 

查看答案和解析>>

同步练习册答案