精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在x轴上,离心率为 ,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B. (Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)若直线l不过点M,求证:直线MA、MB与x轴围成一个等腰三角形.

【答案】解:(Ⅰ)设椭圆的方程为 , ∵椭圆的离心率为
∴a2=4b2
又∵M(4,1),
,解得b2=5,a2=20,故椭圆方程为
(Ⅱ)将y=x+m代入 并整理得
5x2+8mx+4m2﹣20=0,
∵直线l:y=x+m交椭圆于不同的两点A,B
∴△=(8m)2﹣20(4m2﹣20)>0,解得﹣5<m<5.
(Ⅲ)设直线MA,MB的斜率分别为k1和k2 , 只要证明k1+k2=0.
设A(x1 , y1),B(x2 , y2),
根据(Ⅱ)中的方程,利用根与系数的关系得:

上式的分子=(x1+m﹣1)(x2﹣4)+(x2+m﹣1)(x1﹣4)
=2x1x2+(m﹣5)(x1+x2)﹣8(m﹣1)
=
所以k1+k2=0,得直线MA,MB的倾斜角互补
∴直线MA、MB与x轴围成一个等腰三角形
【解析】(I)设出椭圆的标准方程,根据椭圆的离心率为 ,得出a2=4b2 , 再根据M(4,1)在椭圆上,解方程组得b2=5,a2=20,从而得出椭圆的方程;(II)因为直线l:y=x+m交椭圆于不同的两点A,B,可将直线方程与椭圆方程消去y得到关于x的方程,有两个不相等的实数根,从而△>0,解得﹣5<m<5;(III)设出A(x1 , y1),B(x2 , y2),对(II)的方程利用根与系数的关系得: .再计算出直线MA的斜率k1= ,MB的斜率为k2= ,将式子K1+K2通分化简,最后可得其分子为0,从而得出k1+k2=0,得直线MA,MB的倾斜角互补,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: ,左焦点 ,且离心率 (Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆C的右顶点A.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比数列,公比不为1.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a,b为正实数,若函数f(x)=ax3+bx+ab﹣1是奇函数,则f(2)的最小值是(
A.2
B.4
C.8
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年5月20日,针对部分“二线城市”房价上涨过快,媒体认为国务院常务会议可能再次确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):

月收入(百元)

赞成人数

[15,25)

8

[25,35)

7

[35,45)

10

[45,55)

6

[55,65)

2

[65,75)

2


(Ⅰ)试根据频率分布直方图估计这60人的中位数和平均月收入;
(Ⅱ)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求被选取的2人都不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题P:实数x满足2x2﹣5ax﹣3a2<0,其中a>0,命题q:实数x满足
(1)若a=2,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆C满足:①圆心C在射线y=2x(x>0)上; ②与x轴相切;
③被直线y=x+2截得的线段长为
(1)求圆C的方程;
(2)过直线x+y+3=0上一点P作圆C的切线,设切点为E、F,求四边形PECF面积的最小值,并求此时 的值.

查看答案和解析>>

同步练习册答案