精英家教网 > 高中数学 > 题目详情

已知椭圆C:的离心率与等轴双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)

(Ⅰ);(Ⅱ)详见解析

解析试题分析:(I)由等轴双曲线的离心率为,可得椭圆的离心率,因为直线,与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,利用点到直线的距离公式和直线与圆相切的性质可得,,再利用即可得出;(II)分直线AB的斜率不存在与存在两种情况讨论,①不存在时比较简单;②斜率存在时,设直线AB的方程为,由椭圆 与椭圆的方程联立,利用根与系数的关系及斜率公式,再利用即可证明
试题解析:(Ⅰ)由题意得
                                          2分
,解得                        4分
故椭圆C的方程为                              5分
(Ⅱ)当直线AB的斜率不存在时,设A,则B,由k1+k2=2得
,得                           7分
当直线AB的斜率存在时,设AB的方程为y=kx+b(),,

   9分


             11分

故直线AB过定点(―1,―1)                          13分
考点:直线与圆锥曲线的关系;椭圆的标准方程

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知椭圆 的离心率为 ,点 为其下焦点,点为坐标原点,过 的直线 (其中)与椭圆 相交于两点,且满足:.

(1)试用  表示
(2)求  的最大值;
(3)若 ,求  的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在抛物线上.
(1)若的三个顶点都在抛物线上,记三边所在直线的斜率分别为,求的值;
(2)若四边形的四个顶点都在抛物线上,记四边所在直线的斜率分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的右焦点为,离心率为.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆.

(1)椭圆的短轴端点分别为(如图),直线分别与椭圆交于两点,其中点满足,且.
①证明直线轴交点的位置与无关;
②若∆面积是∆面积的5倍,求的值;
(2)若圆:.是过点的两条互相垂直的直线,其中交圆两点,交椭圆于另一点.求面积取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知定点,动点N满足(O为坐标原点),,求点P的轨迹方程.

(2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(ⅰ)设直线的斜率分别为,求证:为定值;
(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

同步练习册答案