精英家教网 > 高中数学 > 题目详情
1.如果cosθ<0,且tanθ>0,则θ是(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

分析 根据三角函数的符号,判断θ是哪一象限角即可.

解答 解:∵cosθ<0,∴θ是第二、第三象限角或x负半轴角,
又tanθ>0,∴θ是第一或第三象限角,
∴θ是第三象限角.
故选:C.

点评 本题考查了根据三角函数值判断三角函数符号的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在△ABC中,已知sinA+cosA=$\frac{1}{5}$,则sinA-cosA=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有一种走“方格迷宫”游戏,游戏规则是每次水平或竖直走动一个方格,走过的方格不能重复,只要有一个方格不同即为不同走法.现有如图的方格迷宫,图中的实线不能穿过,则从入口走到出口共有多少种不同走法?(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知球O的大圆面积为S1,表面积为S2,则S1:S2=1:4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数fn(x)(n∈N*)具有下列性质:fn(0)=$\frac{1}{2}$;n[fn($\frac{k+1}{n}$)-fn($\frac{k}{n}$)]=[fn($\frac{k}{n}$)-1]fn($\frac{k+1}{n}$))(k=0,1,2,…,n-1).
(1)当n一定时,记ak=$\frac{1}{{f}_{n}(\frac{k}{n})}$,求ak的表达式(k=0,1,2,…,n-1);
(2)对n∈N*,证明$\frac{1}{4}$<fn(1)$≤\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|-$\frac{9}{x}$,x∈[1,6].
(1)a=1,解不等式f(x)≤1;
(2)x∈[1,6],f(x)≤5恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线x=$\frac{{a}^{2}}{c}$交于点M,设其右焦点为F,且点F到渐近线的距离为d,则(  )
A.|MF|>dB.|MF|<dC.|MF|=dD.与a,b的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在长方形ABCD中,AB=3,BC=2,E为CD上一点,将一个质点随机投入长方形中,则质点落在阴影部分的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)为奇函数,且x∈(-∞,0)时,f(x)=x(x-1),则x∈(0,+∞)时,f(x)=-x(x+1).

查看答案和解析>>

同步练习册答案