【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有曲池,上中周二丈,外周四丈,广一丈,下中周一丈四尺,外周二丈四尺,广五尺,深一丈,问积几何?”其意思为:“今有上下底面皆为扇形的水池,上底中周2丈,外周4丈,宽1丈;下底中周1丈4尺,外周长2丈4尺,宽5尺;深1丈.问它的容积是多少?”则该曲池的容积为( )立方尺(1丈=10尺,曲池:上下底面皆为扇形的土池,其容积公式为[(2×上宽+下宽)(2×下宽+上宽)]×深)
A.B.1890C.D.
科目:高中数学 来源: 题型:
【题目】某商场销售一种水果的经验表明,该水果每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数.已知销售价格为6元/千克时,每日可售出该水果52千克.
(1)求的值;
(2)若该水果的成本为5元/千克,试确定销售价格的值,使商场每日销售该水果所获得的利润最大,并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,底面,,为线段的中点.
(1)若为线段上的动点,证明:平面平面;
(2)若为线段,,上的动点(不含,),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线上任意一点满足,直线的方程为,且与曲线交于不同两点,.
(1)求曲线的方程;
(2)设点,直线与的斜率分别为,,且,判断直线是否过定点?若过定点,求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l的参数方程为(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4acosθ,直线l与曲线C交于不同的两点M,N.
(1)求实数a的取值范围;
(2)已知a>0,设点P(﹣1,﹣2),若|PM|,|MN|,|PN|成等比数列,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,该几何体是由一个直三棱柱ABE﹣DCF和一个四棱锥P﹣ABCD组合而成,其中EF=EA=EB=2,AE⊥EB,PA=PD,平面PAD∥平面EBCF.
(1)证明:平面PBC∥平面AEFD;
(2)求直线AP与平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】1772年德国的天文学家波得发现了求太阳的行星距离的法则,记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:
星名 | 水星 | 金星 | 地球 | 火星 | 木星 | 土星 |
与太阳的距离 | 4 | 7 | 10 | 16 | 52 | 100 |
除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐经过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带,请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是( )
A.388B.772C.1540D.3076
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,是抛物线:的焦点,是抛物线上位于第一象限内的任意一点,过,,三点的圆的圆心为.
(1)是否存在过点,斜率为的直线,使得抛物线上存在两点关于直线对称?若存在,求出的范围;若不存在,说明理由;
(2)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,圆,过R点的直线交圆于M,N两点过R点作直线交SM于Q点.
(1)求Q点的轨迹方程;
(2)若A,B为Q的轨迹与x轴的左右交点,为该轨迹上任一动点,设直线AP,BP分别交直线l:于点M,N,判断以MN为直径的圆是否过定点。如圆过定点,则求出该定点;如不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com