【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴,长度单位相同,建立极坐标系,已知圆A的参数方程为 (其中θ为参数),圆B的极坐标方程为ρ=2sinθ.
(Ⅰ)分别写出圆A与圆B的直角坐标方程;
(Ⅱ)判断两圆的位置关系,若两圆相交,求其公共弦长.
【答案】解:(Ⅰ)圆A的参数方程为 (其中θ为参数),利用平方关系可得圆A:(x﹣1)2+(y+1)2=4.可得圆心A(1,﹣1),半径R=2. 圆B的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,利用互化公式可得:圆B:x2+y2﹣2y=0,平方可得:x2+(y﹣1)2=1,可得圆心B(0,1),半径r=1.
(Ⅱ)∵|AB|= = ,而R﹣r=1,R+r=3,
<3,∴两圆相交,
两个圆的方程相减可得:x﹣2y+1=0.
∴其公共弦长=2 =
【解析】(Ⅰ)圆A的参数方程为 (其中θ为参数),利用平方关系可得圆A的普通方程.圆B的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,利用互化公式可得直角坐标方程.(Ⅱ)利用两圆的圆心距离与半径的和差半径即可判断出两圆相交.两个圆的方程相减可得公共弦所在直线方程,利用弦长公式即可得出.
科目:高中数学 来源: 题型:
【题目】设正数x,y满足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,则实数a的取值范围是( )
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的长轴长为6,且椭圆C与圆M:(x﹣2)2+y2= 的公共弦长为 .
(1)求椭圆C的方程,
(2)过点P(0,2)作斜率为k(k≠0)的直线l与椭圆C交于两点A,B,试判断在x轴上是否存在点D,使得△ADB为以AB为底边的等腰三角形,若存在,求出点D的横坐标的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a>0,b>0,则称 为a,b的调和平均数.如图,点C为线段AB上的点,且AC=a,BC=b,点O为线段AB中点,以AB为直径做半圆,过点C作AB的垂线交半圆于D,连结OD,AD,BD.过点C作OD的垂线,垂足为E,则图中线段OD的长度是a,b的算术平均数,那么图中表示a,b的几何平均数与调和平均数的线段,以及由此得到的不等关系分别是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年备受瞩目的二十国集团领导人第十一次峰会于9月4~5日在杭州举办,杭州G20筹委会已经招募培训翻译联络员1000人、驾驶员2000人,为测试培训效果,采取分层抽样的方法从翻译联络员、驾驶员中共随机抽取60人,对其做G20峰会主题及相关服务职责进行测试,将其所得分数(分数都在60~100之间)制成频率分布直方图如下图所示,若得分在90分及其以上(含90分)者,则称其为“G20通”.
(Ⅰ)能否有90%的把握认为“G20通”与所从事工作(翻译联络员或驾驶员)有关?
(Ⅱ)从参加测试的成绩在80分以上(含80分)的驾驶员中随机抽取4人,4人中“G20通”的人数为随机变量X,求X的分布列与数学期望.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附参考公式与数据: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.
(1)求椭圆方程;
(2)设不过原点O的直线,与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为,满足,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的导函数为f′(x),对任意的x∈R,都有2f′(x)>f(x)成立,则( )
A. 3f(2ln 2)>2f(2ln 3)
B. 3f(2ln 2)<2f(2ln 3)
C. 3f(2ln 2)=2f(2ln 3)
D. 3f(2ln 2)与2f(2ln 3)的大小不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3﹣12x+b,则下列结论正确的是( )
A.函数f(x)在(﹣∞,﹣1)上单调递增
B.函数f(x)在(﹣∞,﹣1)上单调递减
C.若b=﹣6,则函数f(x)的图象在点(﹣2,f(﹣2))处的切线方程为y=10
D.若b=0,则函数f(x)的图象与直线y=10只有一个公共点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com