精英家教网 > 高中数学 > 题目详情
(2013•资阳二模)若抛物线C的顶点在坐标原点O,其图象关于x轴对称,且经过点M(1,2).
(Ⅰ)若一个等边三角形的一个顶点位于坐标原点,另外两个顶点在该抛物线上,求该等边三角形的边长;
(Ⅱ)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为K1K2,当K1K2变化且满足K1+K2=-1时,证明直线AB恒过定点,并求出该定点坐标.
分析:(Ⅰ)设出抛物线方程,由抛物线过定点求出抛物线的方程,设出等边三角形的另外两个顶点坐标,再由抛物线及等边三角形的对称性即可求解等边三角形的边长;
(Ⅱ)设出MA和MB所在的直线方程,设出A、B两点的坐标,分别把直线和抛物线联立后求得A、B两点的纵坐标,再由两点式写出直线AB的方程,把A、B的坐标代入后整理,利用相交线系方程的知识可求出直线AB恒过的定点.
解答:解:(Ⅰ)根据题意,设抛物线C的方程为y2=ax(a≠0),点M(1,2)的坐标代入该方程,得
a=4,故抛物线C的方程为y2=4x.
设这个等边三角形OEF的顶点E,F在抛物线上,且坐标为(xE,yE),(xF,yF).
yE2=4xEyF2=4xF,又|OE|=|OF|,
xE2+yE2=xF2+yF2,即xE2-xF2+4xE-4xF=0
∴(xE-xF)(xE+xF+4)=0,因xE>0,xF>0,
∴xE=xF,即线段EF关于x轴对称.
则∠EOx=30°,所以
yE
xE
=tan30°=
3
3

xE=
3
yE
,代入yE2=4xE,得yE=4
3

故等边三角形的边长为8
3

(Ⅱ)直线AB恒过定点(5,-6).
事实上,设A(x1,y1),B(x2,y2),则直线MA方程y=k1(x-1)+2,
MB方程y=k2(x-1)+2,
联立直线MA方程与抛物线方程,得
y=k1(x-1)+2
y2=4x
,消去x,
k1y2-4y+8-4k1=0
y1=
4
k1
-2
 ①
同理y2=
4
k2
-2
 ②
而AB直线方程为y-y1=
y2-y1
x2-x1
(x-x1)
,消去x1,x2,得y-y1=
y2-y1
y22
4
-
y12
4
(x-
y12
4
)

化简得即y=
4
y1+y2
x+
y1y2
y1+y2
 ③
由①、②,得y1+y2=4•
k1+k2
k1k2
-4=
-4
k1k2
-4
y1y2=4[
4
k1k2
-
2(k1+k2)
k1k2
+1]=4(
6
k1k2
+1)

代入③,整理得k1k2(x+y+1)+6+y=0.
x+y+1=0
y+6=0
,得
x=5
y=-6
,故直线AB经过定点(5,-6).
点评:本题主要考查了抛物线的几何性质,考查直线与抛物线的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系代入运算,这是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求学生具备较强的运算推理的能力,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•资阳二模)某部门对当地城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,根据每份调查表得到每个调查对象的幸福指数评分值(百分制).现从收到的调查表中随机抽取20份进行统计,得到右图所示的频率分布表:
幸福指数评分值 频数 频率
[50,60] 1
(60,70] 6
(70,80]
(80,90] 3
(90,100] 2
(Ⅰ)请完成题目中的频率分布表,并补全题目中的频率分布直方图;
(Ⅱ)该部门将邀请被问卷调查的部分居民参加“幸福愿景”的座谈会.在题中抽样统计的这20人中,已知幸福指数评分值在区间(80,100]的5人中有2人被邀请参加座谈,求其中幸福指数评分值在区间(80,90]的仅有1人被邀请的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=
14
AB

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)双曲线y2-4x2=64上一点P到它的一个焦点的距离等于1,则P到它的另一个焦点的距离等于为
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过(1,1)与(
6
2
3
2
)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:
1
|OA|2
+
1
|OB|2
+
2
|OM|2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知全集U={1,2,3,4,5},A={1,2,3},B={3,5},则(?UA)∪B=(  )

查看答案和解析>>

同步练习册答案