【题目】如图,在四棱锥中,底面为矩形, 平面, , 为中点.
(I)证明: 平面.
(II)证明: 平面.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣ax﹣2a2(x∈R).
(1)关于x的不等式f(x)<0的解集为A,且A[﹣1,2],求a的取值范围;
(2)是否存在实数a,使得当x∈R时, 成立.若存在给出证明,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是边长为的正方形, 底面, 分别为的中点.
(Ⅰ)求证: 平面;
(Ⅱ)若,试问在线段上是否存在点,使得二面角 的余弦值为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某奥运会主体育场的简化钢结构俯视图如图所示,内外两圈的钢骨架是离心率相同的椭圆,我们称这两个椭圆相似。
(1)已知椭圆,写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围;
(2)从外层椭圆顶点A、B向内层椭圆引切线AC、BD,设内层椭圆方程为+=1 (ab0),AC与BD的斜率之积为-,求椭圆的离心率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)抛物线的顶点在原点,坐标轴为对称轴,并经过点,求此抛物线的方程.
(Ⅱ)已知圆: (),把圆上的各点纵坐标不变,横坐标伸长到原来的倍得一椭圆.求椭圆方程,并证明椭圆离心率是与无关的常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin2( +x)+ (sin2x﹣cos2x),x∈[ , ].
(1)求 的值;
(2)求f(x)的单调区间;
(3)若不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com