精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为矩形, 平面 中点.

(I)证明: 平面

(II)证明: 平面

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)根据矩形性质得,再根据线面平行判定定理得结论(2)先由平面,得,由矩形得,进而根据线面垂直判定定理得平面,即得,再根据等腰三角形性质得,所以根据线面垂直判定定理得结论

试题解析:(I)证明:在矩形中,

平面

平面

平面

(II)在等腰中,

边中点,

平面

点,

平面

平面

平面

点,

平面

平面

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.

(1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直.

(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax﹣2a2(x∈R).
(1)关于x的不等式f(x)<0的解集为A,且A[﹣1,2],求a的取值范围;
(2)是否存在实数a,使得当x∈R时, 成立.若存在给出证明,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为的正方形, 底面 分别为的中点.

)求证: 平面

)若,试问在线段上是否存在点,使得二面角 的余弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某奥运会主体育场的简化钢结构俯视图如图所示,内外两圈的钢骨架是离心率相同的椭圆,我们称这两个椭圆相似。

(1)已知椭圆,写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点关于直线对称,求实数的取值范围;

(2)从外层椭圆顶点AB向内层椭圆引切线ACBD,设内层椭圆方程为+=1 (ab0)ACBD的斜率之积为-,求椭圆的离心率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)抛物线的顶点在原点,坐标轴为对称轴,并经过点,求此抛物线的方程.

(Ⅱ)已知圆: ),把圆上的各点纵坐标不变,横坐标伸长到原来的倍得一椭圆.求椭圆方程,并证明椭圆离心率是与无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切.

1)求圆C的方程;

2)过点的直线与圆C交于不同的两点,且当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中, ,侧面底面 的中点, .

(Ⅰ)求证:

(Ⅱ)求直线与平面所成线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2 +x)+ (sin2x﹣cos2x),x∈[ ].
(1)求 的值;
(2)求f(x)的单调区间;
(3)若不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2﹣(a+2)x+2<0(a∈R).

查看答案和解析>>

同步练习册答案