精英家教网 > 高中数学 > 题目详情

在实数的原有运算法则中,定义新运算a?b=3a-b,则|x?(4-x)|+|(1-x)?x|>8的解集为________.

{x|x<-,x>}
分析:根据定义新运算a?b=3a-b,原不等式化为|x-1|+|x-|>2,转化为与之等价的三个不等式组,分别解出这三个不等式组的解集,再把这三个解集取并集,即得所求.
解答:|x?(4-x)|+|(1-x)?x|>8,即|3x-(4-x)|+|3(1-x)-x|>8,即|4x-4|+|3-4x|>8,
即|x-1|+|x-|>2.
∴①,或②,或 ③
解①得 x<-. 解②得 x∈∅.解③得 x>
综上,不等式的解集为 {x|x<-,x>},
故答案为 {x|x<-,x>}.
点评:本题主要考查定义新运算a?b=3a-b,绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解.体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在实数的原有运算法则中,定义新运算a?b=a-2b,则|x?(1-x)|+|(1-x)?x|>3的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数的原有运算法则中,我们补充定义新运算“⊕”:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2. 则函数f(x)=(1⊕x)•x-(2⊕x),x∈[-2,2]的最大值等于
6
6
(其中“•”和“-”仍为通常的乘法和减法)

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数的原有运算法则中,我们补充定义新运算“⊕”:当 a≥b时,a⊕b=a;当a<b时,a⊕b=b2,函数f(x)=(1⊕x)•x(其中“•”仍为通常的乘法),则函数f(x)在[0,2]上的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数的原有运算法则下,我们定义新运算“⊕”为:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.则函数f(x)=(1⊕x)x-(2⊕x)(其中x∈[-2,2])的最大值等于(上式中“•”和“-”仍为通常的乘法和减法)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东模拟)在实数的原有运算法则中,定义新运算a?b=3a-b,则|x?(4-x)|+|(1-x)?x|>8的解集为
{x|x<-
1
8
,x>
15
8
}
{x|x<-
1
8
,x>
15
8
}

查看答案和解析>>

同步练习册答案