精英家教网 > 高中数学 > 题目详情
已知直线y=kx是曲线y=3x的切线,求k的值.
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用,直线与圆
分析:设出切点,求出导数,求得切线的斜率,由已知切线方程,可得斜率,再由切点在切线上和曲线上,分别满足它们的方程,解方程计算即可得到k.
解答: 解:设切点为(m,n),
y=3x的导数为y′=3xln3,
则切线的斜率为3mln3=k,
又n=km,n=3m
即有3m=km,
即kmln3=k(k≠0),
求得m=log3e,
即有k=3log3eln3=eln3.
点评:本题考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,设出切点和正确求导是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=|log
1
2
2x|+|log
1
2
x|取最小值时x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
2
,cos2x),
b
=(sin2x,
1
2
)函数f(x)=
a
b
+
3
2

(1)求函数f(x)的最小正周期和单调增区间;
(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-y2=1,点A是它的左顶点,c是它的半焦距,点B(c2,0),点P是双曲线右支上的点,且满足AP⊥BP,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,D是AB边上的一点,
CD
=λ(
CA
|
CA|
+
CB
|
CB
|
),|
CA
|=2,|
CB
|=1,若
CA
=
b
CB
=
a
,则用
a
b
表示
CD
为(  )
A、
2
3
a
+
1
3
b
B、
1
3
a
+
2
3
b
C、
1
3
a
+
1
3
b
D、
2
3
a
-
2
3
b
b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(|x|+1)-sin2x的零点个数为(  )
A、9B、10C、11D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

假设函数g(x)=
x
,f(x)=kx2,其中k为常数.
(1)计算g(x)的图象在点(4,2)处的切线斜率;
(2)求此切线方程;
(3)如果函数f(x)的图象经过点(4,2),计算k的值;
(4)求函数f(x)的图象与(2)中的切线的交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,对角线AC与BD交于点O,若
AB
+
AD
=λ
AO
,则实数λ等于(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1-x2)=2f(x1)f(x2);(Ⅲ)f(1)=
3
2
,则下列命题正确的是
 
(只写出所有正确命题的序号)
①函数f(x)是奇函数;
②函数f(x)是偶函数;
③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);
④对任意x∈R,有f(x)≥-1.

查看答案和解析>>

同步练习册答案