【题目】记f(x)=|log2(ax)|在x∈[ ,8]时的最大值为g(a),则g(a)的最小值为( )
A.
B.2
C.
D.4
【答案】B
【解析】解:0<a<1的图象如图1
0<a< 时:f( )=|log2( a)|=log2 ,
f(2)=log2 ,f( )>f(2),
即有g(a)=log2 ∈(2,+∞),
当 ≤a<1时,f( )=|log2( a)|
=log2 ,f(2)=log2(2a),f( )>f(2),
即有g(a)=log2 ∈(1,2];
a≥1的图象如图2
当1≤a< 时,f( )=|log2( a)|
=log2 ,f(2)=log2(2a),f( )>f(2),
即有g(a)=log2 ∈( ,1];
当a≥ 时,f( )=|log2( a)|
=log2 ,f(2)=log2(2a),f( )<f(2),
即有g(a)=log2(2a)∈[ ,+∞).
综上可得g(a)的范围是[ ,+∞).
则M(a)的最小值为 .
故选:B.
对a讨论,当0<a< 时,当 ≤a<1时,当1≤a< 时,当a≥ 时,通过图象,比较f( )和f(2)的大小,求得M(a)的范围,即可得到最小值
科目:高中数学 来源: 题型:
【题目】设fk(n)为关于n的k(k∈N)次多项式.数列{an}的首项a1=1,前n项和为Sn . 对于任意的正整数n,an+Sn=fk(n)都成立. (Ⅰ)若k=0,求证:数列{an}是等比数列;
(Ⅱ)试确定所有的自然数k,使得数列{an}能成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在侧棱和底面垂直的三棱柱ABC﹣A1B1C1中,AB=1,AC= ,BC=2,AA1= ,点P为CC1的中点.
(1)求证:A1C⊥平面ABP;
(2)求平面ABP与平面A1B1P所成二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:[20,25),[25,30),[30,35),[35,40),[40,45].
(Ⅰ)求图中x的值并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为, , , , 五个等级.某考场考生两科的考试成绩的数据如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为的人数.
(Ⅱ)若等级, , , , 分别对应分, 分, 分, 分, 分.
(ⅰ)求该考场考生“数学与逻辑”科目的平均分.
(ⅱ)若该考场共有人得分大于分,其中有人分, 人分, 人分.
从这人中随机抽取两人,求两人成绩之和的分布列和数学期望.
科目:数学与逻辑 | 科目:阅读与表达 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2acos2x+2 bsinxcosx,且f(0)=2,f( )= +1.
(1)求f(x)的最大值及单调递减区间;
(2)若α≠β,α,β∈(0,π),且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若不等式(1﹣a)x2﹣4x+6>0的解集是{x|﹣3<x<1}.
(1)解不等式2x2+(2﹣a)x﹣a>0
(2)b为何值时,ax2+bx+3≥0的解集为R.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某城市有一块半径为40m的半圆形(以O为圆心,AB为直径)绿化区域,现计划对其进行改建.在AB的延长线上取点D,使OD=80m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2. 设∠AOC=x rad.
(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)张强同学说:当∠AOC=时,改建后的绿化区域面积S最大.张强同学的说法正确吗?若不正确,请求出改建后的绿化区域面积S最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com