精英家教网 > 高中数学 > 题目详情
6.设a,b,c均为正数,且2a=log${\;}_{\frac{1}{2}}$a,($\frac{1}{2}$)b=log${\;}_{\frac{1}{2}}$b,($\frac{1}{2}$)c=log2c,则(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

分析 画出函数的图象,然后推出a、b、c的大小即可.

解答 解:在平面直角坐标系中画出函数y=2x,y=log${\;}_{\frac{1}{2}}$x,y=($\frac{1}{2}$)x,y=log2x图象,如图:
可得a<b<c.
故选:C.

点评 本题考查对数函数与指数函数的图象的应用,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设△ABC的内角A、B、C、所对的边分别为a、b、c,已知a=1,b=2,cosC=$\frac{1}{4}$.
(Ⅰ)求△ABC的周长;
(Ⅱ)若f(x)=sin(2x+C),求f($\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知M(2,0),N(0,-2),C为MN中点,点P满足CP=$\frac{1}{2}$MN.
(1)求点P构成曲线的方程.;
(2)是否存在过点(0,-1)的直线l与(1)所得曲线交于点A、B,且与x轴交于点Q,使$\overrightarrow{QA}$•$\overrightarrow{QB}$=3,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=log${\;}_{\frac{1}{2}}$(x2+1)+$\frac{8}{3{x}^{2}+1}$,则不等式f(log2x)+f(log${\;}_{\frac{1}{2}}$x)≥2的解集为(  )
A.(0,2]B.[$\frac{1}{2}$,2]C.[2,+∞)D.(0,$\frac{1}{2}$]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A{x|x∈N},且1≤x≤26,B={a,b,c,…,z},对应关系f:A→B如表(即1到26按由小到大顺序排列的自然数与按照字母表顺序排列的26个英文小写字母之间的一一对应):
x123452526
f(x)abcdeyz
又知函数g(x)=$\left\{\begin{array}{l}{lo{g}_{2}(32-x)(22<x<32)}\\{x+4(0≤x≤22)}\end{array}\right.$,若f[g(x1)],f[g(20)],f[g(x2)],f[g(9)]所表示的字母依次排列恰好组成的英文单词为“exam”,则x1+x2=31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(a,x+f(x)),$\overrightarrow{n}$=(1,ln(1+ex)-x),(a∈R),$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求函数y=f(x)的单调区间;
(2)若△ABC的三个顶点在函数y=f(x)的图象上,从左到右点A,B,C的横坐标依次是x1,x2,x3,且x1,x2,x3成等差数列,当a>0时,△ABC能否构成等腰三角形?若能,求出△ABC的面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.当x=1时,函数f(x)=x3-x2-x-1取得极小值,极小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知单调递增的等比数列{an}满足:a2+a4=20,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义域为R的函数f(x)=$\frac{b-{2}^{-x}}{{2}^{-x+1}+2}$是奇函数.
(1)求b的值;
(2)判断并证明函数f(x)的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0有解,求k的取值范围.

查看答案和解析>>

同步练习册答案