精英家教网 > 高中数学 > 题目详情

【题目】分形几何学是数学家伯努瓦·曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图甲所示的分形规律可得如图乙所示的一个树形图:记图乙中第行黑圈的个数为,则(1_______;(2______

【答案】13

【解析】

观察图形,归纳规律,得到结论.

根据图甲所示的分形规律,1个白圈分形为2个白圈1个黑圈,1个黑圈分形为1个白圈2个黑圈,
第一行记为,第二行记为,第三行记为,第四行的白圈数为;黑圈数为
第四行的“坐标”为
第五行的“坐标”为
各行白圈数乘以2,分别是24102882,即
n行的白圈数为,黑圈数为白圈数减1,即

故答案为:13,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】谢尔宾斯基三角形(英语:Sierpinskitriangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.具体操作是:先取一个实心正三角形(图1),挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形)(图2),然后在剩下的三个小三角形中又各挖去一个“中心三角形”(图3),我们用黑色三角形代表剩下的面积,用上面的方法可以无限连续地作下去.若设操作次数为3(每挖去一次中心三角形算一次操作),在图中随机选取一个点,则此点取自黑色三角形的概率为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,不等式的解集有且只有一个元素,设数列的前项和.

1)求数列的通项公式;

2)若数列满足,求数列的前项和.

3)设各项均不为0的数列中,满足的正整数的个数称为这个数列的变号数,令,求数列的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,点是圆上一动点,动点满足,点在直线上,且.

1)求点的轨迹的标准方程;

2)已知点在直线上,过点作曲线的两条切线,切点分别为,记点到直线的距离分别为,求的最大值,并求出此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为F,过点F的直线交抛物线于AB两点.

1)若,求直线AB的斜率;

2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定合格”“不合格两个等级,同时对相应等级进行量化:合格5分,不合格0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:

等级

不合格

合格

得分

频数

6

24

1)由该题中频率分布直方图求测试成绩的平均数和中位数;

2)其他条件不变,在评定等级为合格的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;

3)用分层抽样的方法,从评定等级为合格不合格的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在处的切线方程是.

1)求的值;

2)若函数,讨论的单调性与极值;

3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的方程为,定点,点是曲线上的动点, 的中点.

(1)求点的轨迹的直角坐标方程;

(2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长度为的线段的两个端点分别在轴和轴上运动,动点满足,设动点的轨迹为曲线.

1)求曲线的方程;

2)过点,且斜率不为零的直线与曲线交于两点,在轴上是否存在定点,使得直线的斜率之积为常数?若存在,求出定点的坐标以及此常数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案