精英家教网 > 高中数学 > 题目详情

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

【答案】12

【解析】

试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得.

试题解析:(1)由cos 2A3cos(BC)1

2cos2A3cos A20

(2cos A1)(cos A2)0

解得cos Acos A=-2(舍去)

因为0<A<π,所以A.

2)由Sbcsin Abc×bc5,得bc20,又b5,知c4.

由余弦定理得a2b2c22bccos A25162021,故a.

从而由正弦定理得sin B sin Csin A×sin Asin2A×.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC中,AsinC

)求B的大小;

)求cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数exf(x)(e=2.71828…,是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数:

f(x)=(x>1) f(x)=x2 f(x)=cosx f(x)=2-x

中具有M性质的是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+.

(I)当a=时,求函数f(x)在x=0处的切线方程;

(II)函数f(x)是否存在零点?若存在,求出零点的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某植物园准备建一个五边形区域的盆栽馆,三角形ABE为盆裁展示区,沿AB、AE修建观赏长廊,四边形BCDE是盆栽养护区,若BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=米。

(1)求两区域边界BE的长度;

(2)若区域ABE为锐角三角形,求观赏长廊总长度AB+AE的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=x与函数的图象恰有三个公共点,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂为检验车间一生产线是否工作正常,现从生产线中随机抽取一批零件样本,测量尺寸(单位: mm )绘成频率分布直方图如图所示:

(Ⅰ)求该批零件样本尺寸的平均数 x 和样本方差 (同一组中的数据用该组区间的中点值作代表);

(Ⅱ)若该批零件尺寸 服从正态分布 ,其中 近似为样本平均数 近似为样本方差 ,利用该正态分布求

(Ⅲ)若从生产线中任取一零件,测量尺寸为30mm,根据 原则判断该生产线是否正常?

附: ;若 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥平面ABCDMAD的中点,NPC的中点.

1)求证:MN∥平面PAB

2)若平面PMC⊥平面PAD,求证:CMAD

3)若平面ABCD是矩形,PA=AB,求证:平面PMC⊥平面PBC

查看答案和解析>>

同步练习册答案