精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的三边所在直线的方程分别是lAB:4x-3y+10=0,lBCy=2,lCA:3x-4y=5.

(1)求∠BAC的平分线所在直线的方程;

(2)AB边上的高所在直线的方程.

【答案】(1)7x-7y+5=0;(2)3x+4y-21=0.

【解析】

(1)P(xy)是∠BAC的平分线上任意一点,根据点PACAB的距离相等求出∠BAC的平分线所在直线的方程.(2) 设过点C的直线系方程为3x-4y-5+λ(y-2)=0,根据此直线与直线lAB:4x-3y+10=0垂直得到λ的值,即得AB边上的高所在直线的方程.

(1)设P(xy)是∠BAC的平分线上任意一点,

则点PACAB的距离相等,即

∴4x-3y+10=±(3x-4y-5).

又∵∠BAC的平分线所在直线的斜率在之间,

∴7x-7y+5=0为∠BAC的平分线所在直线的方程.

(2)设过点C的直线系方程为3x-4y-5+λ(y-2)=0,

即3x-(4-λ)y-5-2λ=0.

若此直线与直线lAB:4x-3y+10=0垂直,

则3×4+3(4-λ)=0,解得λ=8.

AB边上的高所在直线的方程为3x+4y-21=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2 交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,设函数上单调递减, 函数上为增函数, 为假, 为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过A(0,1)和且与x轴相切的圆只有一个,求的值及圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三条直线l1:2x-y+a=0(a>0),直线l2:4x-2y-1=0和直线l3:x+y-1=0,且l1l2的距离是.

(1)a的值.

(2)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求出P点坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,过点P(3,6)的直线l与C相交于A,B两点,且AB的中点为N(12,15),则双曲线C的离心率为(
A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若 四个数中任取的一个数, 是从 三个数中任取的一个数,求上述方程有实根的概率;

(2)若是从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某物流公司购买了一块长AM=30米,宽AN=20米的矩形地块,计划把图中矩形ABCD建设为仓库,其余地方为道路和停车场,要求顶点C在地块对角线MN上,B、D分别在边AM、AN上,假设AB的长度为x米

(1)求矩形ABCD的面积S关于x的函数解析式;

(2)要使仓库占地ABCD的面积不少于144平方米,则AB的长度应在什么范围内?

查看答案和解析>>

同步练习册答案