精英家教网 > 高中数学 > 题目详情

若向量数学公式数学公式满足|数学公式|=|数学公式|=1,数学公式数学公式的夹角为120°,则数学公式•(数学公式+数学公式)=________.


分析:直接利用向量的数量积展开表达式,通过数量积公式求出表达式的值.
解答:•(+)=+=1+1×1×cos120°=
故答案为:
点评:本题是基础题,考查向量的数量积的应用,注意的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2)
b
=(-1,2)
c
=(4,1)
,回答下列三个问题:
(1)试写出将
a
b
c
表示的表达式;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求实数k的值;
(3)若向量
d
满足(
d
+
b
)∥(
a
-
c
)
,且|
d
-
a
|=
26
,求
d

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2)
b
=(2,1)
(1)求向量(
a
+
b
与向量(
a
-
b
)的夹角θ;
(2)若向量
c
满足:①(
c
+
a
)∥
b
;②(
c
+
b
)⊥
a
,求向量
c

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)已知
a
b
是单位向量,
a
b
=0.若向量
c
满足|
c
-
a
-
b
|=1,则|
c
|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
的夹角为60°,且|
a
|=|
b
|=2
,若向量
c
满足(
a
-
c
)•(
b
-
c
)=0
,则|
c
|
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•枣庄模拟)已知a,b是平面内两个互相垂直的单位向量,若向量
C
满足(a+
c
2
)•(b+
c
2
)=0
,则|
c
|的最大值是(  )

查看答案和解析>>

同步练习册答案