精英家教网 > 高中数学 > 题目详情
如图所示,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,A′C的中点E与AB的中点F的距离为( )

A.a
B.a
C.a
D.a
【答案】分析:由在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0,a),A′C的中点E与AB的中点F,知F(a,,0),E(),利用两点间距离公式能求出A′C的中点E与AB的中点F的距离.
解答:解:如图所示,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,
∵A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0,a),
A′C的中点E与AB的中点F,
∴F(a,,0),E(),
|EF|=
=
=
点评:本题考查空间中两点间距离公式的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(
3
2
1
2
,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,则向量
OD
的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,A′C的中点E与AB的中点F的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

 11. 如图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz内,且∠BDC=90°,∠DCB=30°.

(1)求的坐标;

(2)设的夹角为,求cos的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省驻马店市泌阳一中高二(上)12月月考数学试卷(理科)(解析版) 题型:选择题

如图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,则向量的坐标为( )

A.(
B.
C.
D.

查看答案和解析>>

同步练习册答案