精英家教网 > 高中数学 > 题目详情

如图,在平面四边形ABCD中,若AC=3,BD=2,则数学公式=________.

5
分析:先利用向量的加法把转化为,再代入原题整理后即可求得结论.
解答:因为=(+)+(+)=+()=
∴()•(
=()•(
=-
=32-22=5.
故答案为5
点评:本题主要考查向量在几何中的应用以及向量的加法运算,是对基础知识的考查,属于基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,若AB=2,CD=1,则(
AC
+
DB
)•(
AB
+
CD
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC,设点F为棱AD的中点.
(1)求证:DC⊥平面ABC;
(2)求直线BF与平面ACD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角.
(1)求证:AB⊥平面BCD
(2)求三棱锥D-ABC的体积
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角.
(1)求证:AB⊥平面BCD
(2)求三棱锥D-ABC的体积
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC,设点F为棱AD的中点.
(1)求证:DC⊥平面ABC;
(2)求直线BF与平面ACD所成角的余弦值.
精英家教网

查看答案和解析>>

同步练习册答案