精英家教网 > 高中数学 > 题目详情
如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.
【答案】分析:(1)先根据S△ADE=S△ABC求得x和AE的关系,进而根据余弦定理把x和AE的关系代入求得x和y的关系.
(2)根据均值不等式求得y的最小值,求得等号成立时的x的值,判断出DE∥BC,且DE=.进而可得函数f(x)的解析式,根据其单调性求得函数的最大值.
解答:解(1)在△ADE中,y2=x2+AE2-2x•AE•cos60°⇒y2=x2+AE2-x•AE,①
又S△ADE=S△ABC=22=x•AE•sin60°⇒x•AE=2.②
②代入①得y2=x2+-2(y>0),
∴y=(1≤x≤2);
(2)如果DE是水管y=
当且仅当x2=,即x=时“=”成立,故DE∥BC,且DE=
如果DE是参观线路,记f(x)=x2+
可知函数在[1,]上递减,在[,2]上递增,
故f(x)max=f(1)=f(2)=5.∴ymax=
即DE为AB中线或AC中线时,DE最长.
点评:本题主要考查了基本不等式.考查了学生运用所学知识解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x,ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市双流县棠湖中学外语实验学校高一(下)5月月考数学试卷(解析版) 题型:解答题

如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省潍坊市诸城一中高三(上)10月段考数学试卷(解析版) 题型:解答题

如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三第一次月考理科数学试卷 题型:解答题

如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(Ⅰ)设AD=x(x0),ED=y,求用x表示y的函数关系式,并注明函数的定义域;

(Ⅱ)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?

如果DE是参观线路,则希望它最长,DE的位置又应在哪里?

 

 

请给予证明.

 

查看答案和解析>>

同步练习册答案