【题目】已知,,若动点满足:.
(1)求动点的轨迹的方程;
(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,请问在曲线上是否存在点,使得四边形(为坐标原点)为平行四边形?若存在,求出直线的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】近年来.随着计划生育政策效果的逐步显现以及老龄化的加剧,我国经济发展的“人口红利”在逐渐消退,在当前形势下,很多二线城市开始了“抢人大战”,自2018年起,像西安、南京等二线城市人才引进与落户等政策放宽力度空前,至2019年发布各种人才引进与落户等政策的城市已经有16个。某二线城市与2018年初制定人才引进与落户新政(即放宽政策,以下简称新政):硕士研究生及以上可直接落户并享有当地政府依法给与的住房补贴,本科学历毕业生可以直接落户,专科学历毕业生在当地工作两年以上可以落户。高中及以下学历人员在当地工作10年以上可以落户。新政执行一年,2018年全年新增落户人口较2017年全年增加了一倍,为了深入了解新增落户人口结构及变化情况,相关部门统计了该市新政执行前一年(即2017年)与新政执行一年(即2018年)新增落户人口学历构成比例,得到如下饼图:
则下面结论中错误的是( )
A. 新政实施后,新增落户人员中本科生已经超过半数
B. 新政实施后,高中及以下学历人员新增落户人口减少
C. 新政对硕士研究生及以上的新增落户人口数量暂时未产生影响
D. 新政对专科生在该市落实起到了积极的影响
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年1月4日,据“央视财经”微信公众号消息,点外卖已成为众多消费者一大常规的就餐形式,外卖员也成为了一种职业.为调查某外卖平台外卖员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计得如下频率分布直方图:
将上述调查所得到的频率视为概率.
(1)求的值,并估计利用该外卖平台点外卖用户的平均送餐距离;
(2)若该外卖平台给外卖员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份5元,超过4千米为远距离,每份9元.
(i)记为外卖员送一份外卖的牧入(单位:元),求的分布列和数学期望;
(ii)若外卖员一天的收入不低于150元,试利用上述数据估计该外卖员一天的送餐距离至少为多少千米?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面是菱形,,与交于点,底面,为的中点,.
(1)求证: 平面;
(2)求异面直线与所成角的余弦值;
(3)求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABED中,AB//DE,ABBE,点C在AB上,且ABCD,AC=BC=CD=2,现将△ACD沿CD折起,使点A到达点P的位置,且PE.
(1)求证:平面PBC 平面DEBC;
(2)求三棱锥P-EBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)写出当时直线的普通方程和曲线的直角坐标方程;
(Ⅱ)已知点,直线与曲线相交于不同的两点,,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,圆的直角坐标方程为,直线的参数方程为(为参数),射线的极坐标方程为.
(1)求圆和直线的极坐标方程;
(2)已知射线与圆的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com