精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=x3﹣ax在(﹣∞,﹣1]上是单调函数,则a的取值范围是(
A.(3,+∞)
B.[3,+∞)
C.(﹣∞,3)
D.(﹣∞,3]

【答案】D
【解析】解:∵函数f(x)=x3﹣ax在(﹣∞,﹣1]上是单调函数, ∴f′(x)≥0或f′(x)≤0在(﹣∞,﹣1]上恒成立,
即a≤3x2在(﹣∞,﹣1]上恒成立,或a≥3x2在(﹣∞,﹣1]上恒成立,
∵3x2≥3,
∴a≤3,
即实数a的取值范围是(﹣∞,3],
故选:D.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式 (其中e为自然对数的底数)的解集为(
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(1,+∞)
D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4个不同的球,4个不同的盒子,把球全部放入盒子内.
(1)共有几种放法?
(2)恰有1个空盒,有几种放法?
(3)恰有2个盒子不放球,有几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ax2﹣bx+c>0的解集为{x|﹣2<x<3},求不等式cx2﹣bx﹣a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木AE的高度H(m),垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三点共线),试根据上述测量方案,回答如下问题:

(1)若测得α=60°、β=30°,试求H的值;
(2)经过分析若干次测得的数据后,大家一致认为适当调整标杆到树木的距离d(单位:m),使α与β之差较大时,可以提高测量精确度.
若树木的实际高度为8m,试问d为多少时,α﹣β最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为等边三角形,AA1=AB=6,D为AC的中点.

(1)求证:直线AB1∥平面BC1D;
(2)求证:平面BC1D⊥平面ACC1A1
(3)求三棱锥C﹣BC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果曲线2|x|﹣y﹣4=0与曲线x2+λy2=4(λ<0)恰好有两个不同的公共点,则实数λ的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知正方体ABCDA1B1C1D1.

(1)求证:平面A1BD∥平面B1D1C.
(2)若EF分别是AA1CC1的中点,求证:平面EB1D1∥平面FBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx
(1)求f(x)在点(1,f(1))处的切线方程;
(2)若函数 在[1,e]上的最小值为 ,求a的值;
(3)若k∈Z,且f(x)+x﹣k(x﹣1)>0对任意x>1恒成立,求k的最大值.

查看答案和解析>>

同步练习册答案