£¨2012•¶«³ÇÇøÄ£Ä⣩ֱÏßl1£ºy=kx+1-k(k¡Ù0£¬k¡Ù¡À
1
2
)Óël2£ºy=
1
2
x+
1
2
ÏཻÓÚµãP£®Ö±Ïßl1ÓëxÖá½»ÓÚµãP1£¬¹ýµãP1×÷xÖáµÄ´¹Ïß½»Ö±Ïßl2ÓÚµãQ1£¬¹ýµãQ1×÷yÖáµÄ´¹Ïß½»Ö±Ïßl1ÓÚµãP2£¬¹ýµãP2×÷xÖáµÄ´¹Ïß½»Ö±Ïßl2ÓÚµãQ2£¬¡­£¬ÕâÑùÒ»Ö±×÷ÏÂÈ¥£¬¿ÉµÃµ½Ò»ÏµÁеãP1£¬Q1£¬P2£¬Q2£¬¡­£¬µãPn£¨n=1£¬2£¬¡­£©µÄºá×ø±ê¹¹³ÉÊýÁÐ{xn}£®
£¨1£©µ±k=2ʱ£¬ÇóµãP1£¬P2£¬P3µÄ×ø±ê²¢²Â³öµãPnµÄ×ø±ê£»
£¨2£©Ö¤Ã÷ÊýÁÐ{xn-1}ÊǵȱÈÊýÁУ¬²¢Çó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©±È½Ï2|PPn|2Óë4k2|PP1|2+5µÄ´óС£®
·ÖÎö£º£¨1£©¸ù¾ÝÖ±Ïßl1ÓëxÖá½»ÓÚµãP1£¬¹ýµãP1×÷xÖáµÄ´¹Ïß½»Ö±Ïßl2ÓÚµãQ1£¬¹ýµãQ1×÷yÖáµÄ´¹Ïß½»Ö±Ïßl1ÓÚµãP2£¬¹ýµãP2×÷xÖáµÄ´¹Ïß½»Ö±Ïßl2ÓÚµãQ2£¬¡­£¬¿ÉµÃµãP1£¬P2£¬P3µÄ×ø±ê£¬´Ó¶ø²Â³öµãPnµÄ×ø±ê£»
£¨2£©È·¶¨Qn£¬Pn+1µÄ×ø±ê£¬ÀûÓÃPn+1ÔÚÖ±Ïßl1ÉÏ£¬¶ÔÆä±äÐΣ¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©Çó³öPµÄ×ø±ê£¬±íʾ³ö2|PPn|2Óë4k2|PP1|2+5£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º£¨1£©½â£ºÓÉÌâÒâ¿ÉP1(
1
2
£¬0)£¬P2(
7
8
£¬
3
4
)£¬P3(
31
32
£¬
15
16
)
£¬¿É²ÂµÃPn(
22n-1-1
22n-1
£¬
22n-2-1
22n-2
)
£®¡­£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºÉèµãPnµÄ×ø±êÊÇ£¨xn£¬yn£©£¬ÓÉÒÑÖªÌõ¼þµÃµãQn£¬Pn+1µÄ×ø±ê·Ö±ðÊÇ£º(xn£¬
1
2
xn+
1
2
)£¬(xn+1£¬
1
2
xn+
1
2
)
£®
ÓÉPn+1ÔÚÖ±Ïßl1ÉÏ£¬µÃ
1
2
xn+
1
2
=kxn+1+1-k
£®
ËùÒÔ
1
2
(xn-1)=k(xn+1-1)
£¬¼´xn+1-1=
1
2k
(xn-1)£¬n¡ÊN*

ËùÒÔÊýÁÐ{xn-1}ÊÇÊ×ÏîΪx1-1£¬¹«±ÈΪ
1
2k
µÄµÈ±ÈÊýÁУ®
ÓÉÌâÉèÖª x1=1-
1
k
£¬x1-1=-
1
k
¡Ù0
£¬
´Ó¶øxn-1=-
1
k
¡Á(
1
2k
)
n-1
£¬¡àxn=1-2¡Á(
1
2k
)
n
£¬n¡ÊN*
£®¡­£¨9·Ö£©
£¨3£©½â£ºÓÉ
y=kx+1-k
y=
1
2
x+
1
2
µÃµãPµÄ×ø±êΪ£¨1£¬1£©£®
ËùÒÔ2|PPn|2=2(xn-1)2+2(kxn+1-k-1)2=8¡Á(
1
2k
)2n+2(
1
2k
)2n-2
£¬4k2|PP1|2+5=4k2[(1-
1
k
-1)2+(0-1)2]+5=4k2+9
£®
£¨i£©µ±|k|£¾
1
2
£¬¼´k£¼-
1
2
»òk£¾
1
2
ʱ£¬4k2|PP1|2+5£¾1+9=10£¬
¶ø´Ëʱ0£¼|
1
2k
|£¼1
£¬¡à2|PPn|2£¼8¡Á1+2=10£¬
¡à2|PPn|2£¼4k2|PP1|2+5£®
£¨ii£©µ±0£¼|k|£¼
1
2
£¬¡àk¡Ê(-
1
2
£¬0)¡È(0£¬
1
2
)
ʱ£¬4k2|PP1|2+5£¼1+9=10£®
¶ø´Ëʱ|
1
2k
|£¾1
£¬¡à2|PPn|2£¾8¡Á1+2=10£¬
¡à2|PPn|2£¾4k2|PP1|2+5£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬¿¼²é´óС±È½Ï£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«³ÇÇøһģ£©ÒÑÖªsin(45¡ã-¦Á)=
2
10
£¬ÇÒ0¡ã£¼¦Á£¼90¡ã£¬Ôòcos¦Á=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«³ÇÇø¶þÄ££©¶¨Ò壺F£¨x£¬y£©=yx£¨x£¾0£¬y£¾0£©£¬ÒÑÖªÊýÁÐ{an}Âú×㣺An=
F(n£¬2)
F(2£¬n)
£¨n¡ÊN+£©£¬Èô¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐan¡Ýak£¨k¡ÊN*³ÉÁ¢£¬ÔòakµÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«³ÇÇø¶þÄ££©ÒÑÖªº¯Êýf(x)=-
12
x2+2x-aex
£®
£¨¢ñ£©Èôa=1£¬Çóf£¨x£©ÔÚx=1´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Èôf£¨x£©ÔÚRÉÏÊÇÔöº¯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«³ÇÇøһģ£©ÒÑÖªx£¬y£¬z¡ÊR£¬Èô-1£¬x£¬y£¬z£¬-3³ÉµÈ±ÈÊýÁУ¬ÔòxyzµÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¶«³ÇÇø¶þÄ££©ÒÑÖªº¯Êýf(x)=x
1
2
£¬¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈôx£¾1£¬Ôòf£¨x£©£¾1£»
¢ÚÈô0£¼x1£¼x2£¬Ôòf£¨x2£©-f£¨x1£©£¾x2-x1£»
¢ÛÈô0£¼x1£¼x2£¬Ôòx2f£¨x1£©£¼x1f£¨x2£©£»
¢ÜÈô0£¼x1£¼x2£¬Ôò
f(x1)+f(x2)
2
£¼f(
x1+x2
2
)
£®
ÆäÖУ¬ËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ù¢Ü
¢Ù¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸