精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的单调区间;

2)对a∈(01),是否存在实数λ,使成立,若存在,求λ的取值范围;若不存在,请说明理由.

【答案】1)答案不唯一见解析(2)存在,.

【解析】

1)求函数导数,分三种情况,分析的关系,即可求出函数的单调区间;

2)由题意转化为,利用导数求出,即转化为,构造函数,利用导数可求出,即可求解.

1的定义域为

①当a=0时,

所以函数的单调递增区间为,单调递减区间为.

②当a>0时,

所以函数的单调递增区间为,单调递减区间为.

③当a<0时,

所以函数的单调递减区间为,单调递增区间为.

2)由,得,当时,时,

上单调递减,在上单调递增,

所以,故当时,

时,,由(1)知,当时,

所以

若对使成立,即

.

所以,所以 .

,则

时,由,故

所以,故

所以[0,1]上单调递减,

所以时,,即,

, ,

所以当时,单调递减,

所以当时,

时,,故.

所以当时,对

使成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,(其中为自然对数的底数).

1)讨论函数的单调性;

2)当时,函数有最小值,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,曲线在点处的切线与直线平行,求的值;

2)若,且函数的值域为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为4的正方形所在平面与正三角形所在平面互相垂直,分别为的中点.

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若向量列,满足条件:从第二项开始,每一项与它的前一项的差都等于同一个常向量(即坐标都是常数的向量),即,且为常向量),则称这个向量列为等差向量列,这个常向量叫做等差向量列的公差,且向量列的前项和为.已知等差向量列满足,则向量列的前项和

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知衡量病毒传播能力的最重要指标叫做传播指数RO.它指的是,在自然情况下(没有外力介入,同时所有人都没有免疫力),一个感染到某种传染病的人,会把疾病传染给多少人的平均数.它的简单计算公式是:确认病例增长率系列间隔,其中系列间隔是指在一个传播链中,两例连续病例的间隔时间(单位:天).根据统计,确认病例的平均增长率为,两例连续病例的间隔时间的平均数为天,根据以上RO数据计算,若甲得这种传染病,则轮传播后由甲引起的得病的总人数约为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20201月,某公司以问卷的形式调查影响员工积极性的六项关键指标:绩效奖励、排班制度、激励措施、工作环境、人际关系、晋升渠道,在确定各项指标权重结果后,进而得到指标重要性分析象限图(如图).若客户服务中心从中任意抽取不同的两项进行分析,则这两项来自影响稍弱区的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

同步练习册答案