精英家教网 > 高中数学 > 题目详情
在△ABC中,若
cosA
a
=
cosB
b
=
sinC
c
,则△ABC是(  )
A.有一内角为30°的直角三角形
B.等腰直角三角形
C.有一内角为30°的等腰三角形
D.等边三角形
cosA
a
=
sinC
c

∴结合正弦定理
sinA
a
=
sinC
c
,可得sinA=cosA,
因此tanA=1,可得A=
π
4
.同理得到B=
π
4

∴△ABC是以C为直角的等腰直角三角形
故选:B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知f(1-cosx)=sin2x,求函数f(x)的表达式,并求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,a=λ,b=
3
λ(λ>0),∠A=45°则满足此条件的三角形有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2
3
sinωxcosωx-2sin2ωx+1(ω>0)的最小正周期为π,
(Ⅰ)当x∈[0,
π
2
]时,求函数f(x)的取值范围;
(Ⅱ)若α是锐角,且f(
a
2
-
π
6
)=
6
5
,求cosα的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC满足c=2acosB,则△ABC的形状是(  )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC中,sinA=sinB,则三角形的形状为(  )
A.直角△B.等腰△C.等边△D.锐角△

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=sinωx•cosωx+
3
cos2ωx-
3
2
(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为
π
4

(I)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移
π
8
个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

 ①sin(A+B)+sinC;②cos(B+C)+cosA;③
④cos,其中恒为定值的是 (      )
A.①②          B②③           C②④        D③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不等式sin2x>cos2x在区间(0,π)上的解集是
A.B.C.D.

查看答案和解析>>

同步练习册答案