精英家教网 > 高中数学 > 题目详情

【题目】设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13. (Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列 的前n项和Sn

【答案】解:(Ⅰ)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且 解得d=2,q=2.
所以an=1+(n﹣1)d=2n﹣1,bn=qn1=2n1
(Ⅱ)
,①
Sn= ,②
① ﹣②得 Sn=1+2( + +…+ )﹣
= = =
【解析】(Ⅰ)设{an}的公差为d,{bn}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{an}、{bn}的通项公式.(Ⅱ)数列 的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和Sn
【考点精析】本题主要考查了等差数列的通项公式(及其变式)和等比数列的通项公式(及其变式)的相关知识点,需要掌握通项公式:;通项公式:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的导函数, 为自然对数的底数.
(1)讨论 的单调性;
(2)当 时,证明:
(3)当 时,判断函数 零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数a,b满足a+2b=9.
(1)若|9﹣2b|+|a+1|<3,求a的取值范围;
(2)若a,b>0,且z=ab2 , 求z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等比数列,a1=1,a4=27; Sn为等差数列{bn} 的前n 项和,b1=3,S5=35.
(1)求{an}和{bn} 的通项公式;
(2)设数列{cn} 满足cn=anbn(n∈N*),求数列{cn} 的前n 项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+m|+|2x﹣1|(m∈R) (I)当m=﹣1时,求不等式f(x)≤2的解集;
(II)设关于x的不等式f(x)≤|2x+1|的解集为A,且[ ,2]A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的ai为茎叶图中的学生成绩,则输出的m,n分别是(
A.m=38,n=12
B.m=26,n=12
C.m=12,n=12
D.m=24,n=10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解该校高三年级学生数学科学习情况,对广一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计(该校全体学生的成绩均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分组作出频率分布直方图如图1所示,样本中分数在[70,90)内的所有数据的茎叶图如图2所示.
根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表( c ).

分数

[50,85]

[85,110]

[110,150]

可能被录取院校层次

专科

本科

重本


(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3 人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3 名学生进行调研,用ξ表示所抽取的3 名学生中为重本的人数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入p=5,q=6,则输出a的值为

查看答案和解析>>

同步练习册答案