精英家教网 > 高中数学 > 题目详情
10.设命题$p:\frac{{2{x^2}}}{x+1}<1$,命题q:x2-(2a-1)x+a(a-1)≤0,若¬p是¬q的充分不必要条件,求实数a的取值范围.

分析 求出命题p,q的等价条件,结合充分条件和必要条件的定义建立不等式关系进行求解即可.

解答 解:由命题$p:\frac{{2{x^2}}}{x+1}<1$,得 $\frac{2{x}^{2}-x-1}{x+1}$=$\frac{(2x+1)(x-1)}{x+1}$<0,解之得-$\frac{1}{2}$<x<1或x<-1,
由x2-(2a-1)x+a(a-1)≤0即(x-a)[x-(a-1)]≤0,
解得a-1≤x≤a,
因为¬p是¬q的充分不必要条件,由命题的等价性知,q是p的充分不必要条件,
则$\left\{\begin{array}{l}{a-1>-\frac{1}{2}}\\{a<1}\end{array}\right.$或a<-1,即$\frac{1}{2}$<a<1或a<-1.
则a的取值范围为:($\frac{1}{2}$,1)∪(-∞,-1).

点评 本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列一定是指数函数的是(  )
A.y=axB.y=xa(a>0且a≠1)C.$y={(\frac{1}{2})^x}$D.y=(a-2)ax

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一个多面体的直观图(图1)及三视图(图2)如图所示,其中M、N分别是AF、BC的中点,
(1)求证:MN∥平面CDEF;
(2)求平面MNF与平面CDEF所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.点P是椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$上的一点,F1和F2是焦点,且$∠{F_1}P{F_2}={60^0}$,则△F1PF2的周长为6,△F1PF2的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设{an}是正数等差数列,{bn}是正数等比数列,且a1=b1,a11=b11,则(  )
A.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}>lg{a_6}>lg{b_6}$B.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{a_6}≥lg{b_6}$
C.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{b_6}≥lg{a_6}$D.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}<lg{a_6}<lg{b_6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)证明:当0<x<1时,(x-1)f(x)<lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知B=2A,∠ACB的平分线CD把三角形分成面积为4:3的两部分,则cosA=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.x,y满足线性约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若z=y+ax取得最大值的最优解不唯一,则a(  )
A.-2或1B.-2或-$\frac{1}{2}$C.-$\frac{1}{2}$或-1D.-$\frac{1}{2}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A,B,C,D是抛物线y2=8x上的点,F是抛物线的焦点,且$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}+\overrightarrow{FD}=\overrightarrow 0$,则$|\overrightarrow{FA}|+|\overrightarrow{FB}|+|\overrightarrow{FC}|+|\overrightarrow{FD}|$的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案