精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-|x|-k2,下列判断:
①存在实数k,使得函数f(x)有且仅有一个零点;
②存在实数k,使得函数f(x)有且仅有两个零点;
③存在实数k,使得函数f(x)有且仅有三个零点;
④存在实数k,使得函数f(x)有且仅有四个零点.
其中正确的是
②③
②③
(填相应的序号).
分析:将方程x2-|x|-k2=0的问题转化成函数y=x2-|x|与函数y=k2图象的交点问题,画出图象可得.
解答:解:关于x的方程x2-|x|-k2=0,可化为x2-|x|=k2. 
分别画出函数y=x2-|x|和y=k2的图象,如图所示:
由图可知,它们的交点情况是:恰有2,或3个不同的交点.
当k=0时,函数y=x2-|x|和y=k2的图象又3个交点,函数f(x)有且仅有三个零点.
当k≠0时,函数y=x2-|x|和y=k2的图象又2个交点,函数f(x)有且仅有2个零点.
故答案为 ②③.
点评:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案