已知函数f(x),x∈R,满足①f(1+x)=f(1-x),②在[1,+∞]上为增函数,③x1<0,x2>0且x1+x2<-2,试比较f(-x1)与f(-x2)的大小关系.
科目:高中数学 来源: 题型:
x |
A、f(x)=x2+2x+1(x≥0) |
B、f(x)=x2+2x+1(x≥-1) |
C、f(x)=-x2-2x-1(x≥0) |
D、f(x)=-x2-2x-1(x≥-1) |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练17练习卷(解析版) 题型:选择题
已知函数f(x)=2sin(ωx+),x∈R,其中ω>0,-π<≤π.若f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则( )
(A)f(x)在区间[-2π,0]上是增函数
(B)f(x)在区间[-3π,-π]上是增函数
(C)f(x)在区间[3π,5π]上是减函数
(D)f(x)在区间[4π,6π]上是减函数
查看答案和解析>>
科目:高中数学 来源:不详 题型:单选题
x |
A.f(x)=x2+2x+1(x≥0) | B.f(x)=x2+2x+1(x≥-1) |
C.f(x)=-x2-2x-1(x≥0) | D.f(x)=-x2-2x-1(x≥-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求函数f(x)的单调区间和最小值;
(2)当b>0时,求证:bb≥(其中e=2.718 28…是自然对数的底数);
(3)若a>0,b>0,证明f(a)+(a+b)ln2≥f(a+b)-f(b).
(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所满足的关系式记为y=f(x).若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(1)求和c的值.
(2)求函数f(x)的单调递减区间(用字母a表示).
(3)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A与B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),并求S(t)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)在函数y=f(x)的图象上是否存在一点(m,n),使得y=f(x)的图象关于(m,n)对称?
(2)设y=f-1(x)为y=f(x)的反函数,令g(x)=f-1(),是否存在这样的实数b,使得任意的a∈[, ]时,对任意的x∈(0,+∞),不等式g(x)>x-ax2+b恒成立?若存在,求出b的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com