已知函数的图像在点处的切线方程为.
(I)求实数,的值;
(Ⅱ)当时,恒成立,求实数的取值范围.
(I),;(Ⅱ)实数的取值范围为.
【解析】
试题分析:(I)由已知条件,先求函数的导数,利用导数的几何意义,列出方程组:,进而可求得实数,的值;(Ⅱ)当时,恒成立由(I)知,当时,恒成立恒成立,.构造函数,,先求出函数的导数:,再设,求函数导数,可知,从而在区间上单调递减,,由此得,故在区间上单调递减,可求得在区间上的最小值,最后由求得实数的取值范围.
试题解析:(I).由于直线的斜率为且过点. 2分
,解得,. 6分
(Ⅱ)由(I)知,当时,恒成立等价于恒成立. 8分
记,,则,记,则,在区间上单调递减,,故,在区间上单调递减,, 11分
所以,实数的取值范围为. 13分
考点:1.导数的几何意义;2.导数与函数的单调性、最值;3.含参数不等式中的参数取值范围问题.
科目:高中数学 来源:2013届江苏省高二下学期期中考试数学文科试卷(解析版) 题型:解答题
已知函数的图像在点处的切线方程为.
(Ⅰ)求实数的值;
(Ⅱ)设是[)上的增函数, 求实数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com