精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线.

1)求圆面积的最小值;

2)设直线与圆交于不同的两点,且,求圆的方程;

3)设直线与(2)中所求圆交于点为直线上的动点,直线与圆的另一个交点分别为,求证:直线过定点.

【答案】123)证明见解析;

【解析】

1)由题意设圆心为,半径,利用基本不等式求出半径的最小值,从而得到面积的最小值;

2)由,知,运用两直线垂直的条件:斜率之积为,解方程可得,讨论的取值,求得圆心到直线的距离的距离,即可得到所求圆的方程;

3)设,求得的坐标,的方程,联立圆的方程,运用韦达定理,.设,则.设直线的方程为,代入圆的方程,运用韦达定理,可得的关系,即可得到所求定点.

解:(1)由题意可设圆的圆心为

则半径为(当且仅当时取等号),

所以圆的面积最小值为.

2)由,知.

所以,解得.

时,圆心到直线的距离小于半径,符合题意;

时,圆心到直线的距离大于半径,不符合题意.

所以,所求圆的方程为.

3)设,又知

所以

显然,设,则

从而直线方程为:

与圆的方程联立,

消去,可得:

所以,,即

同理直线方程为:

与圆的方程联立,

消去,可得:

所以,,即

所以

消去参数整理得. ①

设直线的方程为,代入

整理得

所以

代入①式,并整理得

,解得

时,直线的方程为,过定点

时,直线的方程为,过定点

第二种情况不合题意(因为在直径的异侧),舍去.

所以,直线过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的15%进行奖励;当销售利润超过10万元时,前10万元按销售利润的15%进行奖励,若超出部分为t万元,则超出部分按进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).

1)写出奖金y关于销售利润x的关系式;

2)如果业务员小王获得3.5万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:(x1)2+(y3)2=9和圆C2x2y24x2y11=0.

1)求两圆公共弦所在直线的方程;

2)求直线过点C(3,-5),且与公共弦垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集具有性质:对任意的 ,,使得成立.

Ⅰ)分别判断数集是否具有性质,并说明理由;

Ⅱ)求证;

Ⅲ)若,求数集中所有元素的和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】节能灯的质量通过其正常使用时间来衡量,使用时间越长,表明质量越好,且使用时间大于或等于6千小时的产品为优质品.现用A,B两种不同型号的节能灯做试验,各随机抽取部分产品作为样本,得到试验结果的频率分布直方图如图所示.

以上述试验结果中使用时间落入各组的频率作为相应的概率.

(1)现从大量的A,B两种型号节能灯中各随机抽取两件产品,求恰有两件是优质品的概率;

(2)已知A型节能灯的生产厂家对使用时间小于6千小时的节能灯实行“三包”.通过多年统计发现,A型节能灯每件产品的利润y(单位:元)与其使用时间t(单位:千小时)的关系如下表:

使用时间t(单位:千小时)

t<4

4≤t<6

t≥6

每件产品的利润y(单位:元)

-10

10

20

若从大量的A型节能灯中随机抽取两件,其利润之和记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由中央电视台综合频道(CCTV-1)和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课。每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了两个地区的名观众,得到如下的列联表:

已知在被调查的名观众中随机抽取名,该观众是地区当中非常满意的观众的概率为,且.

(1)现从名观众中用分层抽样的方法抽取名进行问卷调查,则应抽取满意地区的人数各是多少.

(2)完成上述表格,并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系.

(3)若以抽样调查的频率为概率,从地区随机抽取人,设抽到的观众“非常满意”的人数为,求的分布列和期望.

附:参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰直角三角形中,分别是上的点,的中点沿折起,得到如图2所示的四棱椎,其中

证明:平面

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若,求处的切线方程.

)求在区间上的最小值.

)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某市主办的科技知识竞赛的学生成绩中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组,第一组;第二组;…;第六组,并据此绘制了如图所示的频率分布直方图.

(1)求成绩在区间内的学生人数;

(2)从成绩大于等于80分的学生中随机选取2名,求至少有1名学生的成绩在区间内的概率.

查看答案和解析>>

同步练习册答案