【题目】已知函数f(x)=|x﹣1|﹣2|x+1|的最大值为k.
(1)求k的值;
(2)若a,b,c∈R, +b2=k,求b(a+c)的最大值.
【答案】
(1)解:由于f(x)= ,
当x≥1时,函数的最大值为﹣1﹣4=﹣4,
当﹣1<x<1时,f(x)<f(﹣1)=3﹣1=2,
当x≤﹣1时,f(x)max=f(﹣1)=﹣1+3=2,
所以k=f(x)max=f(﹣1)=2
(2)解:由已知R, +b2=2,有(a2+b2)+(b2+c2)=4,
因为a2+b2≥2ab(当a=b取等号),b2+c2≥2bc(当b=c取等号),
所以a2+b2)+(b2+c2)=4≥(ab+bc),即ab+bc≤2,
故b(a+c)的最大值是2
【解析】(1)根据分段函数的单调性求出函数的最大值,即可求出k的值,(2)根据基本不等式即可求出答案.
科目:高中数学 来源: 题型:
【题目】设数列{an}的各项均为正数.若对任意的n∈N* , 存在k∈N* , 使得an+k2=anan+2k成立,则称数列{an}为“Jk型”数列.
(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n;
(2)若数列{an}既是“J3型”数列,又是“J4型”数列,证明:数列{an}是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形是边长为1的正方形,点、、、顺次在边、、、上,且.过点、、、分别作射线、、、,且,这里为定角,且,由此得到四边形.
(1)问四边形是怎样的四边形?证明你的结论.
(2)设,试将表示成的函数.
(3)是否存在,使为与无关的定值?若存在,求出相应的的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)
某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.
(1)把房屋总造价表示成的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最底?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 点A({2, )在椭圆上,且满足 =0. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)动直线l:y=kx+m与椭圆C交于P,Q两点,且OP⊥OQ,是否存在圆x2+y2=r2使得l恰好是该圆的切线,若存在,求出r;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知D= ,给出下列四个命题: P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命题的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合且,设.
若2,3,4,5,和2,3,4,5,,分别求S的值;
若集合A中所有元素之和为55,求S的最小值;
若集合A中所有元素之和为103,求S的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com