精英家教网 > 高中数学 > 题目详情

【题目】对于数列,如果存在正整数,使得对一切都成立,则称数列等差数列.

(1)若数列2-等差数列,且前四项分别为2-14-3,求的值;

(2)若既是2-等差数列,又是3-等差数列,证明:是等差数列.

【答案】13;(2)证明见解析.

【解析】

1)根据数列的递推关系写出第8项和第9项,即可得到答案;

2)根据既是2-等差数列,得,则均成等差数列,设等差数列公差分别为;因为3-等差数列,所以,则成等差数列,设公差为;取数列中的特殊项可得,并设,从而得到,再根据的关系,将等差数列的通项写成,即可证得结论.

1)∵

.

2)若既是2-等差数列,即,则均成等差数列,

设等差数列公差分别为

3-等差数列,∴,则成等差数列,设公差为

既是中的项,也是中的项,

既是中的项,也是中的项,

.

,则

综上所得

为等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆,与直线交于两点,记直线的斜率为,直线的斜率为.

(1)求椭圆方程;

(2)若,则三角形的面积是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有分别写有123455张卡片.

1)从中随机抽取2张,求两张卡片上数字和为5的概率;

2)从中随机抽取1张,放回后再随机抽取1张,求抽得的第一张卡片上的数大于第二张卡片上的数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上横坐标为的点到焦点的距离为.

1)求抛物线的方程;

2若过点的直线与抛物线交于不同的两点且以为直径的圆过坐标原点,求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表

省数学竞赛一等奖

自主招生通过

高考达重点线

高考达该校分数线

0.5

0.6

0.9

0.7

若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)

(Ⅰ)求该学生参加自主招生考试的概率;

(Ⅱ)求该学生参加考试的次数的分布列及数学期望;

(Ⅲ)求该学生被该校录取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线上.

(1)求圆的方程;

(2)已知过点的直线与圆相交截得的弦长为,求直线的方程;

(3)已知点,在平面内是否存在异于点的定点,对于圆上的任意动点,都有为定值?若存在求出定点的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为梯形,AB//CDAB=AD=2CD=2,△ADP为等边三角形.

(1)PB长为多少时,平面平面ABCD?并说明理由;

(2)若二面角大小为150°,求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.

1)求椭圆的方程;

2)设过点的直线与椭圆相交另一点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出三个命题:①直线上有两点到平面的距离相等,则直线平行平面;②夹在两平行平面间的异面直线段的中点的连线平行于这个平面;③过空间一点必有唯一的平面与两异面直线平行.正确的是( )

A. ②③B. ①②C. ①②③D.

查看答案和解析>>

同步练习册答案