精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{1}{2}$kx2-2x+klnx(k∈R).
(1)当k=$\frac{1}{2}$时,求函数f(x)在[$\frac{1}{2}$,4]上的最大值;
(2)若函数f(x)在区间($\frac{1}{2}$,4)上不单调,求k的取值范围;
(3)当k=2时,设[a,b]⊆[1,2],其中a<b,试证明:函数φ(x)=f′(x)-$\frac{f(b)-f(a)}{b-a}$在区间(a,b)上有唯一的零点.(参考公式:若h(x)=f(g(x)),则h′(x)=f′(g(x))•g′(x))

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可;
(2)求出函数的导数,问题转化为k≥$\frac{2x}{{x}^{2}+1}$对x∈($\frac{1}{2}$,4)恒成立或k≤$\frac{2x}{{x}^{2}+1}$对x∈($\frac{1}{2}$,4)恒成立,从而求出k的范围即可;
(3)求出函数f(x)的导数,问题转化为证明a-b+$\frac{2}{a}$<$\frac{2(lnb-lna)}{b-a}$<b-a+$\frac{2}{b}$,根据函数的单调性分别证明即可.

解答 解:(1)当k=$\frac{1}{2}$时,f(x)=$\frac{1}{4}$x2-2x+$\frac{1}{2}$lnx,
则f′(x)=$\frac{{x}^{2}-4x+1}{2x}$,
由f′(x)=0,得x=2+$\sqrt{3}$或x=2-$\sqrt{3}$(舍),
列表如下:

x$\frac{1}{2}$($\frac{1}{2}$,2+$\sqrt{3}$)2+$\sqrt{3}$(2+$\sqrt{3}$,4)4
f′(x)-0+
f(x)-$\frac{1}{2}$ln2-$\frac{15}{16}$递减取极小值递增ln2-4
因为f(4)-f($\frac{1}{2}$)<0,
所以函数f(x)在[$\frac{1}{2}$,4]上的最大值为f($\frac{1}{2}$)=-$\frac{1}{2}$ln2-$\frac{15}{16}$;
(2)先考虑问题的反面,即若f(x)在区间($\frac{1}{2}$,4)上单调,
则f′(x)≥0对x∈($\frac{1}{2}$,4)恒成立或f′(x)≤0对x∈($\frac{1}{2}$,4)恒成立,
因为f′(x)=$\frac{{kx}^{2}-2x+k}{x}$,则kx2-2x+k≥0对x∈($\frac{1}{2}$,4)恒成立
或kx2-2x+k≤0对x∈($\frac{1}{2}$,4)恒成立.
即k≥$\frac{2x}{{x}^{2}+1}$对x∈($\frac{1}{2}$,4)恒成立或k≤$\frac{2x}{{x}^{2}+1}$对x∈($\frac{1}{2}$,4)恒成立,
所以k≥1或k≤$\frac{8}{17}$,从而所求的k的取值范围是($\frac{8}{17}$,1).
(3)证明:当k=2时,f(x)=x2-2x+2lnx,则f′(x)=2x-2+$\frac{2}{x}$,
所以φ(x)=2x-2+$\frac{2}{x}$-$\frac{f(b)-f(a)}{b-a}$,
则φ′(x)=2-$\frac{2}{{x}^{2}}$,因为1≤x≤2,所以φ′(x)≥0,
故φ(x)在区间[a,b]上单调递增,从而原命题等价于:
要证明φ(a)<0<φ(b),
即证2a-2+$\frac{2}{a}$<$\frac{f(b)-f(a)}{b-a}$<2b-2+$\frac{2}{b}$,
只要证2a-2+$\frac{2}{a}$<$\frac{{(b}^{2}-2b+2lnb)-{(a}^{2}-2a+2lnb)}{b-a}$<2b-2+$\frac{2}{b}$,
只要证a-b+$\frac{2}{a}$<$\frac{2(lnb-lna)}{b-a}$<b-a+$\frac{2}{b}$  ①,
(i)先证:$\frac{2(lnb-lna)}{b-a}$<b-a+$\frac{2}{b}$   ②,
令t=b-a,则b=t+a,所以1≤a<t+a≤2,
只需证:2ln(1+$\frac{t}{a}$)<t2+$\frac{2t}{a+t}$    ③,
令h(t)=t2+$\frac{2t}{a+t}$-2ln(1+$\frac{t}{a}$),(0<t≤1),
则h′(t)=$\frac{2t{[(t+a)}^{2}-1]}{{(a+t)}^{2}}$>0,
所以h(t)在(0,1)上单调递增,于是h(t)>h(0)=0,
所以③式与②式成立.
(ii)再证:a-b+$\frac{2}{a}$<$\frac{2(lnb-lna)}{b-a}$  ④,令t=b-a,则b=t+a,
所以1≤a<t+a≤2,只需证:-t2+$\frac{2t}{a}$<2ln(1+$\frac{t}{a}$) ⑤,
令m(t)=2ln(1+$\frac{t}{a}$)+t2-$\frac{2t}{a}$,(0<t≤1),
则m′(t)=$\frac{2t[a(t+a)-1]}{a(a+t)}$>0,
所以m(t)在(0,1)上单调递增,
于是m(t)>m(0)=0,所以⑤式成立,从而④式也成立.
综上所述,不等式①成立,故原命题成立.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想、转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.从0,1,2,3,4,5,6这七个数字中选两个奇数和两个偶数,组成没有重复数字的四位数的个数为(  )
A.432B.378C.180D.362

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.棱长为1的正方体ABCD-A1B1C1D1中,点P在线段BD上运动.
(Ⅰ)求证:AC⊥平面BB1P;
(Ⅱ)若BP=1,设异面直线B1P与AC1所成的角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知常数 a、b 满足 a>1>b>0,若f(x)=lg(ax-bx),x∈(0,+∞)
(1)证明 y=f(x)在(0,+∞)内是增函数;
(2)若 f(x)恰在(1,+∞)内取正值,且 f(2)=lg2,求 a、b 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=xex+c有两个零点,则c的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,且2n+1,Sn,a成等差数列(n∈N*).
(1)求a的值及数列{an}的通项公式;
(2)若bn=-(an+1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\sqrt{3-x}$+log2(x+1)的定义域为(  )
A.[-1,3)B.(-1,3)C.[-1,3]D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线的顶点是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的中心,焦点是椭圆的右焦点,抛物线方程为y2=12x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下面是函数y=f(x)的部分对应值,则f[f($\sqrt{3}$)]等于(  )
x-3-2-10$\sqrt{2}$$\sqrt{3}$$\sqrt{5}$
y$\sqrt{3}$$\sqrt{2}$0$\sqrt{5}$-30-1
A.0B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案