精英家教网 > 高中数学 > 题目详情
2.下列通项公式可以作为等比数列通项公式的是(  )
A.an=2nB.${a_n}=\sqrt{n}$C.${a_n}={2^{-n}}$D.an=log2n

分析 利用等比数列定义求解.

解答 解:在A中,an=2n,$\frac{{a}_{n+1}}{{a}_{n}}=\frac{2(n+1)}{2n}$=$\frac{n+1}{n}$,不是常数,故A不成立;
在B中,${a}_{n}=\sqrt{n}$,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{\sqrt{n+1}}{\sqrt{n}}$,不是常数,故B不成立;
在C中,an=2-n,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{2}^{-n-1}}{{2}^{-n}}$=$\frac{1}{2}$,是常数,故C成立;
在D中,an=log2n,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{lo{g}_{2}(n+1)}{lo{g}_{2}n}$,不是常数,故D不成立.
故选:C.

点评 本题考查等比数列的通项公式的判断,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.16B.$24+8\sqrt{5}$C.48D.$24+16\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{1}{2}$x2-ex,g(x)=x-elnx.
(1)求函数g(x)的极值;
(2)若对任意的x∈[$\frac{1}{e}$,+∞),方程f(x)=ag(x)有且只有两个实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$\lim_{n→∞}\frac{{1+\frac{1}{3}+\frac{1}{9}+…+\frac{1}{3^n}}}{{1+\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2^n}}}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在五面体ACDEF中,已知DE⊥平面ABCD,AD∥BC,∠BAD=60°,AB=4,DE=EF=2.
(1)求证:BC∥EF;
(2)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知${log_4}(3a+4b)={log_2}\sqrt{2ab}$,则a+b的最小值为$\frac{7+4\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F(2,0),设A、B为双曲线上关于原点对称的两点,AF的中点为M,BF的中点为N,若原点O在以线段MN为直径的圆上,直线AB的斜率为$\frac{{3\sqrt{7}}}{7}$,则双曲线的离心率为(  )
A.4B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.两条平行直线l1:x+2y+5=0和l2:4x+8y+15=0的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l1:2x-y+1=0与直线l2:x-y-2=0的夹角大小为arctan$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案