精英家教网 > 高中数学 > 题目详情

【题目】如图,在几何体中,平面底面,四边形是正方形,的中点,且

1)证明://平面

2)求直线与平面所成角的正弦值.

【答案】1)证明见解析(2

【解析】

1)连接交于点,连接,证明四边形是平行四边形得到答案.

2)过点作面与面的交线,交直线,证明与面所成的角,计算得到答案.

1)证明:如图1所示,连接交于点,连接.

因为四边形是正方形,所以的中点,

又已知的中点,所以

又因为,所以,即四边形是平行四边形,

所以,因此平面.

2)如图2所示,过点作面与面的交线,交直线.

作线的垂线,垂足为.

再过作线的垂线,垂足为.

因为,所以

所以,又因为

所以,所以与面所成的角,

因为,所以

的中点,如图2所示,边上的高,

因为,所以,所以

因为,所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数处取得极值,其中.

1)求实数t的取值范围;

2)判断上的单调性并证明;

3)已知上的任意,都有,令,若函数3个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论上的零点个数;

(2)当时,若存在,使,求实数的取值范围.(为自然对数的底数,其值为2.71828……)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人准备投资1200万元办一所中学,为了考虑社会效益和经济效益,对该地区教育市场进行调查,得出一组数据,列表如下(以班级为单位).

市场调查表:

班级学生数

配备教师数

硬件建设费(万元)

教师年薪(万元)

初中

50

2.0

28

1.2

高中

40

2.5

58

1.6

根据物价部门的有关规定:初中是义务教育阶段,收费标准适当控制,预计除书本费、办公费外,初中每人每年可收取600.高中每人每年可收取1500.因生源和环境等条件限制,办学规模以2030个班为宜(含20个班与30个),教师实行聘任制.初、高中教育周期均为三年,设初中编制为个班,高中编制为个班,请你合理地安排招生计划,使年利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 .(1)讨论的极值点的个数;(2)若对于,总有.(i)求实数的取值范围;(ii)求证:对于,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.

1)求的值;

2)动点在抛物线的准线上,动点上,若点处的切线轴于点,设.求证点在定直线上,并求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求曲线的斜率为1的切线方程;

(Ⅱ)当时,求证:

(Ⅲ)设,记在区间上的最大值为Ma),当Ma)最小时,求a的值.

查看答案和解析>>

同步练习册答案