精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若处导数相等,证明:为定值,并求出该定值;

(2)已知对于任意,直线与曲线有唯一公共点,求实数的取值范围.

【答案】(1)6;(2)

【解析】

(1)求出原函数的导函数,结合在处导数相等及根与系数的关系可得,从而求得为定值6;(2)由,可知函数的图象为下凸,在的图象为上凸,求得函数的极大值点,再由直线过点,然后对分类讨论求使直线与曲线有唯一公共点的实数的取值范围.

(1)证明:

由题意得,

(2)解:

函数的图象为下凸,在的图象为上凸,

,求得的切线为,再记

,求得的极大值点为

①当时,直线与曲线显然只有唯一公共点;

②当时,直线斜率为正,且与曲线有三个公共点,舍去;

③当时,直线斜率为正,且与曲线有三个公共点,舍去;

④当时,若在直线上方,直线与曲线的上凸部分有唯一公共点,与下凸部分不相交;

,直线与曲线)交于P点,与上凸部分和下凸部分均不相交;

在直线下方,直线y=kx+a与曲线的下凸部分有唯一公共点,与上凸部分不相交,此种情况成立.

综上,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为连续10天,每天新增疑似病例不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是

A. 甲地:总体均值为3,中位数为4 B. 乙地:总体均值为1,总体方差大于0

C. 丙地:中位数为2,众数为3 D. 丁地:总体均值为2,总体方差为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:

①数列为等差数列的充要条件是其通项公式为n的一次函数.

②在面积为S的边AB上任取一点P,则的面积大于的概率为.

③将多项式分解因式得,则.

④若那么由,那么由以及x轴所围成的图形一定在x轴下方.

其中正确命题的序号为_____________(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,已知过点且斜率为1的直线与曲线是参数)交于两点,与直线交于点.

1)求曲线的普通方程与直线的直角坐标方程;

2)若的中点为,比较的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若函数在区间内有且只有一个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于,直线l与椭圆C交于两点,其中直线l不过原点.

1)求椭圆C的方程;

2)设直线的斜率分别为,其中.的面积为S.分别以为直径的圆的面积依次为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三数学考试中,一般有一道选做题,学生可以从选修4-4和选修4-5中任选一题作答,满分10.某高三年级共有1000名学生参加了某次数学考试,为了了解学生的作答情况,计划从该年级1000名考生成绩中随机抽取一个容量为10的样本,为此将1000名考生的成绩按照随机顺序依次编号为000~999.

1)若采用系统抽样法抽样,从编号为000~999的成绩中随机确定的编号为026,求样本中的最大编号.

2)若采用分层抽样法,按照学生选择选修4-4或选修4-5的情况将成绩分为两层,已知该校共有600名考生选择了选修4-4400名考生选择了选修4-5,在选取的样本中,选择选修4-4的平均得分为6分,方差为2,选择选修4-5的平均得分为5分,方差为0.75.用样本估计该校1000名考生选做题的平均得分和得分的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABCA1B1C1中,∠ACB90°,∠ABC45°,ABAA12PCC1的中点.

1)证明:AB1⊥平面PA1B

2)设EBC的中点,线段AB1上是否存在一点Q,使得QE∥平面A1ACC1?若存在,求四棱锥QAA1C1C的体积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】足球运动是一项古老的体育活动,众多的资料表明,中国古代足球的出现比欧洲早,历史更为悠久,如图,现代比赛用足球是由正五边形与正六边形构成的共32个面的多面体,著名数学家欧拉证明了凸多面体的面数(F),顶点数(V),棱数(E)满足F+V-E=2,那么,足球有______.个正六边形的面,若正六边形的边长为,则足球的直径为______.cm(结果保留整数)(参考数据

查看答案和解析>>

同步练习册答案