精英家教网 > 高中数学 > 题目详情

【题目】已知,函数.

1是函数数的导函数,记,若在区间上为单调函数,求实数a的取值范围;

(2)设实数,求证:对任意实数,总有成立.

附:简单复合函数求导法则为.

【答案】(1)

(2)证明见解析

【解析】

1)由题得,再对a分两种情况讨论结合导数得解;(2)不妨设,取为自变量构造函数,再证明即证得.

(1)由已知得,记,则.

①若在定义域上单调递增,符合题意;

②若,令解得自身单调递增,

要使导函数在区间上为单调函数,

则需,解得

此时导函数在区间上为单调递减函数.

综合①②得使导函数在区间上为单调函数的的取值范围是.

(2)因为,不妨设,取为自变量构造函数,

,则其导数为

在R上单调递增

而且

所以

.

故关于的函数单调递增,

证得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于双曲线),若点满足,则称的外部;若点满足,则称的内部.

1)若直线上点都在的外部,求的取值范围;

2)若过点,圆)在内部及上的点构成的圆弧长等于该圆周长的一半,求满足的关系式及的取值范围;

3)若曲线)上的点都在的外部,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合函数,函数的值域为,

(1)若不等式的解集为,求的值;

(2)在(1)的条件下,若恒成立,求的取值范围;

(3)若关于的不等式的解集,求实数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数由方程到确定,对于函数给出下列命题:

①对任意,都有恒成立:

,使得同时成立;

③对于任意恒成立;

④对任意,

都有恒成立.其中正确的命题共有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图圆锥PO,轴截面PAB是边长为2的等边三角形,过底面圆心O作平行于母线PA的平面,与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到其顶点E的距离为( )

A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理)已知数列满足),首项

1)求数列的通项公式;

2)求数列的前项和

3)数列满足,记数列的前项和为ABC的内角,若对于任意恒成立,求角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数p,使其值域为,则称函数渐近函数

1)证明:函数是函数的渐近函数,并求此时实数p的值;

2)若函数,证明:当时,不是的渐近函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3,答错或不答得0,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项不同,如果甲最终的得分为54,那么乙的所有可能的得分值组成的集合为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,空间直角坐标系中,四棱锥的底面是边长为的正方形,且底面在平面内,点轴正半轴上,平面,侧棱与底面所成角为45°

1)若是顶点在原点,且过两点的抛物线上的动点,试给出满足的关系式;

2)若是棱上的一个定点,它到平面的距离为),写出两点之间的距离,并求的最小值;

3)是否存在一个实数),使得当取得最小值时,异面直线互相垂直?请说明理由;

查看答案和解析>>

同步练习册答案