精英家教网 > 高中数学 > 题目详情
20.函数y=x2-|x|-a-1有四个不同的零点,则实数a的取值范围是$-\frac{5}{4}$<a<-1.

分析 若使函数y=x2-|x|-a-1有四个不同的零点,令t=|x|,则方程y=t2-t-a-1有两个不同的正根,解得答案.

解答 解:∵函数y=x2-|x|-a-1有四个不同的零点,
令t=|x|,
则方程y=t2-t-a-1有两个不同的正根,
∴$\left\{\begin{array}{l}△=1+4(a+1)>0\\-a-1>0\end{array}\right.$
解得,$-\frac{5}{4}$<a<-1,
故答案为:$-\frac{5}{4}$<a<-1

点评 本题考查了零点的个数问题,转化为方程的解的个数问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.对于①“很可能发生的”,②“一定发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由大到小排列为(填序号)②①③⑤④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,已知空间四边形OABC的对边OA,BC的中点分别为P、Q,OB、CA的中点分别为R、S,OC、AB的中点分别为E、F,求证三条线段PQ,RS,EF交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知p:|x-m|<4,q:(x-2)(x-3)<0,且q是p的充分不必要条件,则m的取值范围为[-1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若方程tanx+sinx-a=0,在0<x≤$\frac{π}{3}$内有解,则a的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要得到函数y=cos(2x+π)的图象,只需将函数y=cosx的图象(  )
A.向左平移π个单位,要把所有点的横坐标伸长到原来的2倍,纵坐标不变
B.向右平移π个单位,要把所有点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移π个单位,要把所有点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变
D.向右平移π个单位,要把所有点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p1:函数y=lntanx与y=$\frac{1}{2}$ln$\frac{1-cos2x}{1+cos2x}$是同一函数;p2:已知x0是函数f(x)=$\frac{1}{1-x}$+2x的一个零点,若1<x1<x0<x2,则f(x1)<0<f(x2),则在以下命题:①p1∨p2;②(¬p1)∧(¬p2);③(¬p1)∧p2;④p1∨(¬p2)中,真命题是①③(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
(1)求f(0);
(2)证明:函数y=f(x)是奇函数;
(3)证明:函数f(x)是R上的减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若方程$\frac{{x}^{2}}{k-4}$-$\frac{{y}^{2}}{k+4}$=1表示双曲线,则它的焦点坐标为(  )
A.($\sqrt{2k}$,0),(-$\sqrt{2k}$,0)B.(0,$\sqrt{-2k}$),(0,$-\sqrt{2k}$)C.($\sqrt{2|k|}$,0),(-$\sqrt{2|k|}$,0)D.根据k的取值而定

查看答案和解析>>

同步练习册答案