精英家教网 > 高中数学 > 题目详情

【题目】二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.

(1)求f(x)的解析式;

(2)解不等式f(x)>2x+5.

【答案】(1);(2)

【解析】

(1) 设二次函数f(x)=ax2+bx+c,利用待定系数法即可求出f(x);

(2) 利用一元二次不等式的解法即可得出.

(1).设二次函数f(x)=ax2+bx+c

∵函数f(x)满足f(x+1)﹣f(x)=2x

f(x+1)-f(x)=-=2ax+a+b=2x

,解得f(0)=1. c=1

∴f(x)=x2﹣x+1.

(2) 不等式f(x)>2x+5,即x2﹣x+1>2x+5,化为x2﹣3x﹣4>0.

化为(x﹣4)(x+1)>0,解得x>4x<﹣1.

∴原不等式的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若向量 ,其中ω>0,记函数 ,若函数f(x)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次成公差为π的等差数列.
(1)求f(x)的表达式及m的值;
(2)将函数y=f(x)的图象向左平移 ,得到y=g(x)的图象,当 时,y=g(x)与y=cosα的交点横坐标成等比数列,求钝角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2(ωx)﹣ (ω>0)的最小正周期为 ,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,已知(a﹣3b)cosC=c(3cosB﹣cosA).
(1)求 的值;
(2)若c= a,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,点E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于点G.

(1)求证:EF=EG;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).

(1)若点P(m,m+1)在圆C上,求直线PQ的斜率.

(2)M是圆C上任一点,求|MQ|的取值范围.

(3)若点N(a,b)在圆C上,求的最大值与最小值.

查看答案和解析>>

同步练习册答案